General memory for maths MCQ Flashcards

1
Q

equation for binomial coefficient nCr + definition

A

n!/r!(n-r)! the number of ways of choosing r objects from n objects

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Sum of angles and single angle of a regular triangle

A

180, 60

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Sum of angles and single angle of a regular square

A

350, 90

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Sum of angles and single angle of a regular pentagon

A

540, 108

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Sum of angles and single angle of a regular hexagon

A

720, 120

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Sum of angles and single angle of a regular heptagon

A

900, 128.571

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Sum of angles and single angle of a regular octagon

A

1080, 135

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Sum of angles and single angle of a regular nonagon

A

1260, 140

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Sum of angles and single angle of a regular decagon

A

1440, 144

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

exterior angle equation

A

360/n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

interior angle equation

A

180(n-2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

area of a parallelogram

A

base x height

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

features of a parallelogram

A

opposite angles are equal, angles next to each other add up to 180 degrees, the diagonals bisect the angles, diagonals bisect into 2 congruent triangles

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

features of a rhombus

A

the diagonals are perpendicular, opposite angles are equal, angles adjacent add up to 180 degrees, diagonals bisect the angles and also the rhombus into 2 isosceles triangles/4 congruent right angled triangles

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

area of a trapezium and angle features

A

0.5(sum of parallel sides) x height - the interior angles of the parallel sides sum to 180 degrees

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

features of a kite

A

diagonals meet at 90 degrees, 2 sides of the same length, the angle made at the point 2 different length sides are made is equal to the opposite side.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Area of a kite

A

(diagonal x diagonal)/2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

define congruence

A

2 shapes are congruent is they are exactly the same. I.e same shape and size, or if one has the same shape and size as the mirror image of the other

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

What are the conditions of congruence

A

FOUR CONDITIONS: SSS, SAS, ASA and RHS (right angle, hypotenuse, side) - have to occur next to each other

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

What are similar triangles

A

Similar triangles have the same size angles (congruent angles) and corresponding SIDES in PROPORTION.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

what are sectors, segments and arcs (minor vs. major)

A

a sector is pizza, a segment is a straight slice and an arc is from one point on the perimeter to another. Longer/larger is the major shorter/smaller is the minor,

22
Q

angle between radius and tangent

A

90 degrees

23
Q

circumference and area of a circle

A

πr^2 and 2πr // πd

24
Q

opposite angles in a cyclic quadrilateral

A

add to 180 degrees, the exterior angle of one of these angles is equal to the opposite angle in the cyclic quadrilateral

25
the angle subtended by two points to the centre is
twice the angle subtended by those 2 points at the circumference
26
Alternate segment theorem
the angle between a chord and a tangent through on the end points is equal to the angle in alternate segment
27
angle in a triangle semicircle
90 degrees when the hypotenuse is the diameter
28
volume and surface area of a cube
volume is a^3 and surface area is 6a^2
29
volume and surface area of a cuboid dimensions x, y, and z
volume = xyz, SA = 2(xy+xz+yz)
30
volume of a right angles prism
area of face x length
31
volume of right angles circular cylinder
πr^2 x height, SA = 2πr^2 + 2πrl
32
Area of a triangle
1/2absinC // 1/2base x height where height is perpendicular to height
33
volume and surface area of a sphere
volume 4/3πr^3 and SA 4πr^2
34
pyramids and cones volume
1/3 x base x perpendicular height
35
arc length
r x theta when theta is in radians, otherwise π(r)theta/180
36
convert radians to degrees
Radians to degrees x180/π ... Degreens to radians xπ/180
37
area of a sector
Degrees: πr^2 x theta/360 ... Radians: 1/2r^2 theta
38
sin 30
1/2
39
sin 60
root3/2
40
sin 45
root2/2
41
cos 30
root3/2
42
cos 60
1/2
43
cos 45
root2/2
44
tan 1/2
root3/3
45
tan 60
root3
46
tan 45
1
47
cos 90
0
48
sin 90
1
49
tan 90
undefined
50
sin 0
0
51
cos 0
1
52
tan 0
0