Integral Calculus Flashcards
1
Q
True or false, indefinite integral has limits
A
False
2
Q
∫ a du =
A
a ∫ du = au + c
3
Q
∫ a^u du =
A
a^ u / In a + c , a > 1, a=1
4
Q
∫ u^n du
A
= 1/ n +1 u^n+1
5
Q
∫e^u du
A
= e^u + C
6
Q
∫ u^-1 du
A
= du/u = ln abs u + c
7
Q
∫ln u du
A
=u ln abs u - u +c
8
Q
∫ sin u
A
= -cos u+ c
9
Q
∫ cos u du
A
= sin u + c
10
Q
∫ tan u du
A
= ln abs sec u + c
11
Q
∫ cot u du
A
= ln abs sin u + c
12
Q
∫ sec u du
A
= ln abs sec u + tan u + c
13
Q
∫csc u du
A
= ln |csc u - cot u| + c
= - ln |csc u - cot u| + c
14
Q
∫ sec u tan u du
A
= sec u + c
15
Q
∫csc u cot u du
A
= - csc u + c
16
Q
∫sec^2 u du
A
= tan u+ C
17
Q
∫csc^2 u du
A
= -cot u + c
18
Q
Indefinite Integral caltech
A
- Input given, let x be any uncommon number
- Differentiate all choices usng d/dx function in calcu, let x be same in step 1
- Which ever is the same in step 1 is the answer
19
Q
Integral by parts caltech
A
Differentiate u and v till zero, see notes for full step
23
Q
Plane areas: Step in solving rectangular strip
A
- Plot the given curve
- Choose what strip to use
- Solve for the equation to be integrated (Xr-Xl) or (Yu-Yl)
- Find the limits (POI), equate the two equations solved from step 3
24
Q
Plane areas: Step in solving radial strip
A
- Make equation equal to r
- Substitute r to radial strip formula
- Get limits using mode 6 (table)
Start: 0, End: 2pi, Step: pi/12
25
Area of some polar curve: r2 = k cos 2 theta
Area= K
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
26
Area of some polar curve: r2 = k sin 2 theta
Area= K
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
27
Area of some polar curve: r2 = k sin theta
Area= 2K
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
28
Area of some polar curve: r2 = k cos theta
Area= 2K
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
29
Area of some polar curve: r = k(1+cos theta)
Area = 1.5 pi K^2
Perimeter = 2pi a
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
30
Area of some polar curve: r = k(1+sin theta)
Area = 1.5 pi K^2
Perimeter = 2 pi a
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
31
Area of some polar curve: r = k sin 3 theta
Area = 1/4 pi k^2
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
32
Area of some polar curve: r = k cos 3 theta
Area = 1/4 pi k^2
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
33
Area of some polar curve: r = k cos 2 theta
Area = 1/2 pi k^2
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
34
Area of some polar curve: r = 2 k cos theta
Area = pi k^2
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
35
Area of some polar curve: r = 2 k sin theta
Area = pi k^2
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
36
Volume of Solid of Revolution: Disk method formula
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
37
In disk method: the orientation of the strip must be ______ to the axis of revolution
perpendicular
38
Volume of Solid of Revolution: Disk method formula
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
39
In ring method: the orientation of the strip must be ______ to the axis of revolution
perpendicular
40
Volume of Solid of Revolution: Shell method formula
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
41
Second Proposition of Pappus, what method and formula
Shell Method
V = 2pi A d
42
Length of Curves: Parametric Formula
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
43
Length of Curves: Rectangular Formula
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
44
Length of Curves: Polar Formula
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
45
First Proposition of Pappus, what method and formula
Surface area of Curves
SA = 2 pi integral of d.ds
46
First Moment of Area
Centroid
47
Centroid Formula
[link to formula](https://drive.google.com/file/d/15DTcnGslisKr_Q1jZvQCPRtYLLCPbY5M/view?usp=sharing)
48
Second Moment of Area
Moment of Inertia
49
Moment of Inertia resists:
bending
50
Moment of Inertia: y- axis
Iy = integral of x^2 dA
or
Iy = 1/3 integral of x^3 dy
51
Moment of Inertia: x- axis
Ix = integral of y^2 dA
or
Ix = 1/3 integral of y^3 dx
52
Moment of Inertia: differential area must be _______ to the "with respect of x/y axis"
Parallel
53
Polar Moment of Inertia Formula
J= R^2 dA
or
J= Iy + Ix
54
Product of Inertia Formula
Ixy = integral of xy dA
55
Work Problems
Work = integral of f(x) . dX