K近邻法 Flashcards

(15 cards)

1
Q

K近邻法书分类算法么?

A

是的

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

K近邻法的直观解释:

A

对于新的输入实例, 在训练样本中找出它最临近的K个实例, 这K个实例的多数属于某个类, 就将新的实例归为此类

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

K=1时k近邻法是什么

A

最近邻法

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

k近邻法与特征空间的关系

A

等价于特征空间的划分

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

K近邻法的三要素

A

距离度量, k值的选择和分类决策规则

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Lp距离的定义

A

(\sum |xi-yi|^p ) ^(1/p)
特殊当p=1是, 就是曼哈顿距离, 即绝对值距离
当p为无穷是, 就是对应坐标最大的绝对差

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

什么情况下, K近邻会发生过拟合

A

当k值比较小时, 只有与输入实例很接近的训练实例才会起作用, 一旦其中混有噪声, 很容易发生过拟合,也就是对验证样本预测错误

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

当k=N时, k近邻会产生什么样的结果

A

将所有的新实例都预测为训练实例中占比最大的那一类

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

常用的k近邻的分类决策规则

A

多数表决

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

采用多数表决的k近邻的损失函数

A

0-1损失函数

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

多数表决规则等价于什么

A

经验风险最小化

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

k近邻的实现主要应该考虑的问题是什么

A

如何快速地进行k近邻搜索, 在样本量大或者空间维数大的时候很有必要

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

平衡的kd树是搜索时效率是最优的么?

A

不一定

但是为什么呢?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

如何构造平衡的kd树

A

选择坐标轴, 以此坐标轴的中位数为切分点, 分为左右两个区域

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

如何利用kd树进行k近邻搜索?

A

1 确定包含目标点的叶节点
2 此叶节点为当前最近点
3 递归向上退回, 并对每一个节点操作: 如果该结点保存的实例比当前最近点距离目标点更近, 那么更新当前最近点; 没有写完!!!!!!!!!!!!

How well did you know this?
1
Not at all
2
3
4
5
Perfectly