Math Concepts Flashcards

(41 cards)

1
Q

[2 Brainteasers] Σn=1..N n2 = ?

A

Σn=1..N n2​ = N(N+1)(2N+1)/6 = N3/3 + N2/2 + N/6

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

[3-1 Calc] ax = e? d ax/dx = ?

A

ax = ex lna

d ax/dx = axlna

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

[3-1 Calc] d(lnx)/dx = ?

A

d(lnx)/dx = 1/x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

[3-1 Calc] e

ex = lim? (1+?)?

Taylor series f(x) = ex = ?

A

ex = limn→inf (1+x/n)n

ex = Σn=0..inf [1/n! xn]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

[3-1 Calc] Taylor series: f(x) = ?

A

f(x)

= f(x0) + f’(x0)(x-x0) + 1/2 f’‘(x0)(x-x0)2 + …

= Σn=0..inf [1/n! f(n)(x0) (x-x0)n]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

[3-1 Calc] Newton’s method vs. Secant method

A

Newton’s method: x[t+1] = x[t] - f(x[t]) / f’(x[t]), quadratic convergence

Secant method: x[t+1] = x[t] - f(x[t]) / (f(x[t])-f(x[t-1]))/(x[t]-x[t-1]), (1+5^0.5)/2 convergence

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

[3-1 Calc] Gradient descent

A

Gradient descent: x[t+1] = x[t] - l * g’(x[t]), l = step size, g’ = grad(g)

(Newton’s method equivalent: f = g’; requires 2nd derivative g’’)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

[3-1 Calc] Lagrange multipliers

min f(x1,x2) s.t. g1(x1,x2)=0, g2(x1,x2)=0

solve x1, x2

A

L = f(x1,x2) - l1*g1(x1,x2) + l2*g2(x1,x2)

grad(L) = 0:

dL/dx1 = df/dx1 + l1*dg1/dx1 + l2*dg2/dx1 = 0

dL/dx2 = df/dx2 + l1*dg1/dx2 + l2*dg2/dx2 = 0

dL/dl1 = g1 = 0

dL/dl2 = g2 = 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

[3-2 LinAl] projv(u) = ?

A

projv(u) = |u| cos(o) v/|v| = |u| u.v/|u||v| v/|v| = u u.v/|v|^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

[3-2 LinAl] eigenvalues (v)

Π v = ?

Σ v = ?

det(A - vI) = ?

A

Π v = det(A)

Σ v = trace(A) = Σ A[i,i]

det(A - vI) = 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

[3-2 LinAl] determinants

det(A’) ? det(A’)

det(A-1) ? det(A)-1

det(AB) ? det(A)det(B)

A=LR: det(A) ? det(L)det(R) ? (ΠL[i,i]) (ΠR[i,i])

A

det(A’) = det(A’)

det(A-1) = det(A)-1

det(AB) = det(A)det(B)

A=LR: det(A) = det(L)det(R) = (ΠL[i,i]) (ΠR[i,i])

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

[3-2 LinAl] pos semi def

x’Ax ? 0

eigval ? 0

det(Ak) ? 0

A

x’Ax >= 0

eigval >= 0

det(Ak) >= 0 for all k

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

[3-2 LinAl] matrix derivatives

d/dx a’x = ?

d/dx Ax = ?

d/dx x’Ax = ?

d2/dxdx’ x’Ax = ?

d/dx (Ax+b)’C(Dx+e) = ?

A

d/dx a’x = a

d/dx Ax = A

d/dx x’Ax = (A’+A)x

d2/dxdx’ x’Ax = A

d/dx (Ax+b)’C(Dx+e) = A’C(Dx+e) + D’C’(Ax+b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

[3-2 LinAl] simulate X ~ N(U,S)

A

X = U + R’Z, where S = R’R and Z~N(0,1)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

[4 Prob] geometric series

Σk=0..n [ark] = ?

A

Σk=0..n [ark] = a (1-rn+1)/(1-r)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

[4 Prob] binomial theorem

(a+b)n = Σ?

A

(a+b)n = Σk=0..n [nCk an-k bk]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

[4 Prob] Distribution discrete/continuous: Uniform distribution Unif(a,b)

pmf P(X=x) = ?

pdf f(x) = ?

E[X] = ?

Var(X) = ?

A

pmf P(X=x) = 1/(b-a+1)

pdf f(x) = 1/(b-a)

E[X] = (b+a)/2

Var(X) = (b-a)2/12 cont, ((b-a+1)2-1)/12 disc

18
Q

[4 Prob] Distribution discrete: Bernoulli Bernoulli(p)

pmf P(X=x) = ?

E[X] = ?

Var(X) = ?

A

Bernoulli: # success in 1 trial

pmf P(X=x) = px(1-p)1-x, x = 0,1

E[X] = p

Var(X) = p(1-p)

19
Q

[4 Prob] Distribution discrete: Binomial Bin(n,p)

pmf P(X=x) = ?

E[X] = ?

Var(X) = ?

A

Binomial: # success in n trials

P(X=x) = nCx px (1-p)n-x

E[X] = np

Var(X) = np(1-p)

20
Q

[4 Prob] Distribution discrete: MultiNomial MultiNomial(p1,..pk)

pmf P(X1=x1,..,Xk=xk) = ?

E[Xi] = ?

Var(Xi) = ?

A

MultiNomial: a specific combo

P(X1=x1,..,Xk=xk) = (n!/x1!..xk!) p1x1..pkxk, n = Σxi

E[Xi] = npi

Var(Xi) = npi(1-pi)

21
Q

[4 Prob] Distribution discrete: Hyper Geometric HypGeo(n,N,k)

pmf P(X=x) = ?

E[X] = ?

HypGeo? –> Bin(n, p=k/N)

A

Hyper Geometric: # success in n trials w/o replacement

P(X=x) = kCx (N-k)C(n-x) / NCn

E[X] = nk/N

HypGeon<5%N –> Bin(n, p=k/N)

22
Q

[4 Prob] Distribution discrete: Multivariate Hyper Geometric MultiHypGeo(k1,..kk)

pmf P(X1=x1,..Xk=xk) = ?

A

Multivariate Hyper Geometric: a specific combo w/o replacement

pmf P(X1=x1,..Xk=xk) = (k1Cx1)..(kkCxk)/NCn, N = Σki, n = Σxi

23
Q

[4 Prob] Distribution discrete: Geometric Geo(p)

pmf P(X=x) = ?

cdf F(x) = ?

E[X] = ?

Var(X) = ?

A

Geometric: # tries to get 1st success

P(X=x) = (1-p)x-1 p

F(x) = 1-(1-p)x

E[X] = 1/p

Var(X) = (1-p)/p2

24
Q

[4 Prob] Distribution discrete: Negative Binomial NegBin(r, p)

pmf P(X=x) = ?

E[X] = ?

Var(X) = ?

A

Negative Binomial: # tries to get rth success

P(X=x) = (x-1)C(r-1) (1-p)x-r pr

E[X] = r/p

Var(X) = r(1-p)/p2

25
[4 Prob] Distribution discrete: Poisson Pois(l) pmf P(N(t) = x) = ? E[N(t)] = ? Var(N(t)) = ?
Poisson: # occurrences over an interval P(N(t) = x) = e-lt (lt)x / x! E[N(t)] = Var(N(t)) = lt
26
[4 Prob] Distribution continuous: Chi-Sq X2k, t Tk, F Fk1,k2 X2k = f(Z), f=? Tk = f(Z, X2k), f=? Fk1,k2 = f(X2k1, X2k2), f=?
X2k = Σi=1..k Zi2 Tk = Z / sqrt(X2k/k); limk→inf = Z Fk1,k2 = (X2k1/k1) / (X2k2/k2)
27
[4 Prob] Distribution continuous: Normal univariate N(u,s) and multivariate N(U,S) pdf f(x) = ?
f(x) = 1/sqrt(2πs2) \* e^(-1/2 ((x-u)/s)2) f(x) = 1/sqrt((2π)k det(S)) \* e^(-1/2 (x-U)'(S-1)(x-U))
28
[4 Prob] Distribution continuous: Exponential Exp(l) pdf f(x) = ? cdf F(x) = ? E[X] = ? Var(X) = ?
Exponential: time until event occurs (memoryless) f(x) = le-lx if l \>= 0 else 0 F(x) = 1 - e-lx E[X] = 1/l Var(X) = 1/l2
29
[4 Prob] MGF M(t) = ? and how does it generate moments?
M(t) = E[etX] M'(t) = E[XetX] --\> M'(0) = E[X] M''(t) = E[X2etX] --\> M''(0) = E[X2] M(n)(t) = E[XnetX] --\> M(n)(0) = E[Xn]
30
[5 Stochastics] Markov Chain x[i] = prob of reaching s from i x[s] = ? x[i] = ? for all i absorb and not s x[i] = ? for all i transient y[i] = time to absorption y[i] = ? for all i absorb y[i] = ? for all i transient
x[i] = prob of reaching s from i x[s] = 1 x[i] = 0 for all i absorb and not s x[i] = Σ p[i,j]x[j] for all i transient y[i] = time to absorption y[i] = 0 for all i absorb y[i] = Σ p[i,j]y[j] for all i transient p[i,j] = p(i--\>j)
31
[5 Stochastics] Martingale E[Sn] = ? E[Sn2] = ?
E[Sn] = 0, E[Sn2] = n
32
[Stats] ZScores Within 1 std = ?%, 2 std = ?%, 3 std = ?% One-sided 1% = ? std, 5% = ? std, 10% = ? std Two sided 1% = ? std, 5% = ? std, 10% = ? std
Within 1 std = 68.2%, 2 std = 95.4%, 3 std = 99.7% One-sided 1% = 2.33 std, 5% = 1.64 std, 10% = 1.28 std Two sided 1% = 2.58 std, 5% = 1.96 std, 10% = 1.64 std
33
[Stats] Test for Diff H0: mean(X1) - mean(X2) = d test = ?
if Var(X1) = Var(X2): Z = (mu1 - mu2 - d) / sp sqrt(1/n1 + 1/n2); s2p = s12(n1-1) + s22(n2-1)/(n1+n2-2) if Var(X1) != Var(X2): Z = (mu1 - mu2 - d) / sqrt(s12/n1 + s22/n2)
34
[Stats] 1-way ANOVA H0: ? test = ?
H0: u1=u2=..=uK N obs, K groups: SumSqTotal = Σk,j (Xk,j - uX)2 = GroupSumSq + WithinGroupSumSq SumSqAcross = Σk=1..K nk(uk - uX)2 SumSqWithin = Σk=1..Kj=1..J(k) (Xi,j - uk)2) = Σk=1..K (nk-1)s2k F = SSA/(k-1) / SSW/(n-k) F ~ 1: H0 (SSA/(k-1) and SSW/(n-k) are independent estimators of SST/(n-1)) F \>\> 1: not H0
35
[Stats] OLS/Gauss-Markov assumptions
Basic: linear relationship, X deterministic 1. (y, X) iid 2. E[Y4] \< inf, E[X4] \< inf (if violate, use L1 cost) 3. X not perfect multicollinear 4. E[e|X] = 0 (if violate, use IV) 5. Var(e) = s2I 6. e ~ Normal 1-4: OLS assumptions 1-5: Gauss-Markov assumptions 1-6: best ~ Normal and Y|X ~ Normal
36
[4\* Stats] OLS beta best ~ N(?, ?) Xibest ~ N(?, ?)
best ~ N(b, s2(X'X)-1), s2 = 1/(N-k) Σ ei2 Xibest ~ N(Xib, Xi'Var(best )Xi)
37
[Stats] OLS beta group test H0: b1 = .. = bK = 0, F = ? H0: bK-J+1 = .. = bK = 0, F = ?
H0: b1 = .. = bK = 0, F = ((0-SSE)/(K-1)) / (SSE/(N-K)) = (R2/(K-1)) / ((1-R2)/(N-K)) H0: bK-J+1 = .. = bK = 0, F = ((SSE1..K-J-SSE)/J) / (SSE/(N-K)) = ((R2 - R1..K-J2)/J) / ((1-R2)/(N-K)), SSE1..K-J and R1..K-J2 from restricted model
38
[Stats] OLS beta OVB 1) y = bX + cZ + e; 2) y = bOVBX + e bOVB = b + ?
bOVB​ = b + c cov(X,Z)/var(X) = b + cd, where Z = dX + e Note: fixed effects in panel regressions partially resolve this, since it removes any omitted variables solely associated with entities or times
39
[Stats] OLS log transform What's dy/dx and what does b represent? y = bx + e y = b ln(x) + e ln(y) = bx + e ln(y) = b ln(x) + e
(y, x): dy/dx = b (y, ln(x)): dy/dx = b 1/x --\> b = dy/(dx/x) (ln(y), x): dy/dx = b ebx+e = by --\> (dy/y)/dx (ln(y), ln(x)): dy/dx = b 1/x ebx+e = b y/x --\> (dy/y)/(dx/x)
40
[Stats] WLS and GLS What are solutions when Var(e) = Σ != s2I? If accept inefficient solution, adjust SE.. If not, use alternative estimator..
If accept inefficient solution: NW or HAC (diag only) SE adj Var(best) = (X'X)-1X'ΣX(X'X)-1 If not, use alternative estimator: GLS / WLS (diag only) y = Xb + e --\> Py = PXb + Pe, where P'P = Σ-1 --\> y~ = Py, X~ = Px best = (X~'X~)-1X~'y~ = (X'Σ-1X)-1X'Σ-1y Var(best) = s2(X~'X~)-1 = s2(X'Σ-1X)-1, where s2 = 1/(N-k) (y~-X~best)'(y~-X~best) = 1/(N-k) (y-Xb)'Σ-1(y-Xb)
41
[Stats] BLUE What's B, L, U, Estimator?
Best: efficient, Var(statisticest) = min Var(statistici) for all i Linear: statisticest = Ay Unbiased: E[statisticest] = statistic