midterm Flashcards
(86 cards)
VECTOR SPACE
- ∃0∈V : 0+u=u, ∀u∈V
- u+v=v+u, ∀u,v∈V
- u(v+w) = (u+v)+w, , ∀u,v,w∈V
- ∃z∈V : u+z=0, ∀u∈V
- 1.u=u, ∀u∈V
- a.b.u = ab.u, ∀u∈V, ∀a,b∈F
- a.(u+v) = (a.u)+(a.v), ∀u,v∈V, ∀a∈F
- u.(a+b) = (a.u)+(b.u), ∀u∈V, ∀a,b∈F
U is subspace of V (def.)
if U is subset of V that is a vector space with same vector addition and scalar multiplication as in V
U⊆V subpace of V
⟺
cu+v ∈U whenever u,v ∈U and c ∈F
null(A)
{x ∈F^n: Ax=0} ⊆F^n
columns in kernel
col(A)
{Ax: x∈F^n} ⊆F^n
set of all linear combinations (span) of the columns of A
list vs set
β = a1, a2,…, ar vs β = {a1, a2,…, ar}
span(U)
set of all linear combinations of elements of U (may be set U⊆F^n or list β=U)
span(∅)
span(u∈U)
= {0}
={cu: c∈F}
PROPERTIES OF SPAN (thm.1.4.9,10)
- span(U⊆V)⊆V
- U ⊆ span U
- U = span U ⟺ U⊆V
- span(spanU) = span U
- U ⊆W ⟹ span U ⊆ span W
U⊆V is spanning set of V
β:=list of vectors in V is spanning list of V
span(U) = V
span(β) = V
span(U ∪ W),
U, W⊆V
= (U + W) ⊆ V
DIRECT SUM
U,W ⊆ V: U ∩ W = ∅
⟹
U⊕W bijective (every element unique)
v1,…,vr LINEARLY DEPENDENT
∃c1,…,cr ∈F not all zero:
c1v1+…+crvr=0
v∈V linearly dependent ⟺
v=0
any list of vectors containing the zero vector and/or a repeated vector is linearly dependent
β = v1,…,vr linearly dependent ⟹
v1,…,vr, v linearly dependent, ∀v∈V
β = v1,…,vr linearly independent
c1v1+…+crvr=0 ⟺ c1=…=cr=0
v1,…,vr linearly independent
then a1v1+…+arvr = b1v1+…+brvr
⟺
ai=bi, ∀i=1,…,r
omitted vj from list β, r>=2
v1,…,vj-hat,…,vr
* linearly indep if β is
β linearly indep. and does not span V ⟹
β, v linearly independent, ∀v∉β
β linearly indep. and span(β)=V, then c1v1+…+crvr=0 nontrivial ⟹
v1,…,vj-hat,…,vr spans V, cj≠0
BASIS of vector space V
β linearly independent: span(β)=V
A = [a1 … an] ∈ Mn(F) invertible ⟹
a1,…,an is basis for F^n
REPLACEMENT LEMMA
- β = u1,…,ur spans V≠∅
- v= Σciui ≠ 0
⟹
- ∃j: cj ≠ 0
- cj ≠ 0 ⟹ v, u1,…, uj-hat,…, ur spans V
- cj ≠ 0 and β basis for V
⟹
v, u1,…, uj-hat,…, ur is basis for V - β basis for V, r>=2
- v∉span{u1,…,uk}, k∈{1,2,…,r}
⟹
∃j∈{k+1,k+2,…,r}: v, u1,…, uk, uk+1, uj-hat,…, ur is basis for V
= ∫p(t)(q(t))_dt