neetcode-150 Flashcards
(150 cards)
1. Two Sum
Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
You can return the answer in any order.
Example 1:
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]
Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: hashmap = {} for i in range(len(nums)): complement = target - nums[i] if complement in hashmap: return [i, hashmap[complement]] hashmap[nums[i]] = i # Return an empty list if no solution is found return []
2 Add Two Numbers
You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
Example 1:
Input: l1 = [2,4,3], l2 = [5,6,4]
Output: [7,0,8]
Explanation: 342 + 465 = 807.
Example 2:
Input: l1 = [0], l2 = [0]
Output: [0]
Example 3:
Input: l1 = [9,9,9,9,9,9,9], l2 = [9,9,9,9]
Output: [8,9,9,9,0,0,0,1]
class Solution: def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]: # Dummy node to simplify edge cases (empty lists, first node assignment) dummy = ListNode(0) current = dummy carry = 0 # Carry from previous addition # Process until both lists are exhausted and there is no carry. while l1 or l2 or carry: # Extract values if nodes exist; otherwise, use 0. val1 = l1.val if l1 else 0 val2 = l2.val if l2 else 0 total = val1 + val2 + carry carry = total // 10 # New carry new_digit = total % 10 # The digit for the current node # Create new node for the computed digit. current.next = ListNode(new_digit) current = current.next # Move to the next node in l1 and l2 if available. if l1: l1 = l1.next if l2: l2 = l2.next # The dummy node's next pointer points to the head of the result list. return dummy.next
3 Longest Substring Without Repeating Characters
Given a string s, find the length of the longest substring without duplicate characters.
Example 1:
Input: s = “abcabcbb”
Output: 3
Explanation: The answer is “abc”, with the length of 3.
Example 2:
Input: s = “bbbbb”
Output: 1
Explanation: The answer is “b”, with the length of 1.
Example 3:
Input: s = “pwwkew”
Output: 3
Explanation: The answer is “wke”, with the length of 3.
Notice that the answer must be a substring, “pwke” is a subsequence and not a substring.
Constraints:
- 0 <= s.length <= 5 * 104
- s consists of English letters, digits, symbols and spaces
class Solution: def lengthOfLongestSubstring(self, s: str) -> int: char_set = set() left = 0 max_len = 0 for right, char in enumerate(s): # If duplicate is found, shrink window from left until it's removed. while char in char_set: char_set.remove(s[left]) left += 1 # Add current character and update maximum length. char_set.add(char) max_len = max(max_len, right - left + 1) return max_len
4 Median of Two Sorted Arrays
Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n)).
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: # Ensure nums1 is the smaller array to minimize binary search range. if len(nums1) > len(nums2): nums1, nums2 = nums2, nums1 m, n = len(nums1), len(nums2) low, high = 0, m while low <= high: partitionX = (low + high) // 2 partitionY = (m + n + 1) // 2 - partitionX # If partitionX is 0, there are no elements on left side in nums1. maxLeftX = float("-inf") if partitionX == 0 else nums1[partitionX - 1] # If partitionX is m, there are no elements on right side in nums1. minRightX = float("inf") if partitionX == m else nums1[partitionX] maxLeftY = float("-inf") if partitionY == 0 else nums2[partitionY - 1] minRightY = float("inf") if partitionY == n else nums2[partitionY] # Check if we have found the correct partition. if maxLeftX <= minRightY and maxLeftY <= minRightX: # If total length is odd, return the max of left parts. if (m + n) % 2 == 1: return float(max(maxLeftX, maxLeftY)) else: return (max(maxLeftX, maxLeftY) + min(minRightX, minRightY)) / 2.0 # If we are too far on the right side for nums1, move left. elif maxLeftX > minRightY: high = partitionX - 1 # Otherwise, move right. else: low = partitionX + 1 # If the arrays are not correctly partitioned, return 0 (this should not happen). return 0
5 Longest Palindromic Substring
Given a string s, return the longest palindromic substring in s.
Example 1:
Input: s = “babad”
Output: “bab”
Explanation: “aba” is also a valid answer.
Example 2:
Input: s = “cbbd”
Output: “bb”
Constraints:
1 <= s.length <= 1000
s consist of only digits and English letters.
518 Coin Change II
You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money.
Return the number of combinations that make up that amount. If that amount of money cannot be made up by any combination of the coins, return 0.
You may assume that you have an infinite number of each kind of coin.
The answer is guaranteed to fit into a signed 32-bit integer.
Example 1:
Input: amount = 5, coins = [1,2,5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
Example 2:
Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.
Example 3:
Input: amount = 10, coins = [10]
Output: 1
Constraints:
1 <= coins.length <= 300
1 <= coins[i] <= 5000
All the values of coins are unique.
0 <= amount <= 5000
7 Reverse Integer
Given a signed 32-bit integer x, return x with its digits reversed. If reversing x causes the value to go outside the signed 32-bit integer range [-231, 231 - 1], then return 0.
Assume the environment does not allow you to store 64-bit integers (signed or unsigned).
Example 1:
Input: x = 123
Output: 321
Example 2:
Input: x = -123
Output: -321
Example 3:
Input: x = 120
Output: 21
Constraints:
-231 <= x <= 231 - 1
1448 Count Good Nodes in Binary Tree
Given a binary tree root, a node X in the tree is named good if in the path from root to X there are no nodes with a value greater than X.
Return the number of good nodes in the binary tree.
Example 1:
Input: root = [3,1,4,3,null,1,5]
Output: 4
Explanation: Nodes in blue are good.
Root Node (3) is always a good node.
Node 4 -> (3,4) is the maximum value in the path starting from the root.
Node 5 -> (3,4,5) is the maximum value in the path
Node 3 -> (3,1,3) is the maximum value in the path.
Example 2:
Input: root = [3,3,null,4,2]
Output: 3
Explanation: Node 2 -> (3, 3, 2) is not good, because “3” is higher than it.
Example 3:
Input: root = [1]
Output: 1
Explanation: Root is considered as good.
Constraints:
The number of nodes in the binary tree is in the range [1, 10^5].
Each node’s value is between [-10^4, 10^4].
10 Regular Expression Matching
Given an input string s and a pattern p, implement regular expression matching with support for ‘.’ and ‘*’ where:
’.’ Matches any single character.
‘*’ Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).
Example 1:
Input: s = “aa”, p = “a”
Output: false
Explanation: “a” does not match the entire string “aa”.
Example 2:
Input: s = “aa”, p = “a”
Output: true
Explanation: ‘’ means zero or more of the preceding element, ‘a’. Therefore, by repeating ‘a’ once, it becomes “aa”.
Example 3:
Input: s = “ab”, p = “.”
Output: true
Explanation: “.” means “zero or more (*) of any character (.)”.
Constraints:
1 <= s.length <= 20
1 <= p.length <= 20
s contains only lowercase English letters.
p contains only lowercase English letters, ‘.’, and ‘’.
It is guaranteed for each appearance of the character ‘’, there will be a previous valid character to match.
11 Container With Most Water
You are given an integer array height of length n. There are n vertical lines drawn such that the two endpoints of the ith line are (i, 0) and (i, height[i]).
Find two lines that together with the x-axis form a container, such that the container contains the most water.
Return the maximum amount of water a container can store.
Notice that you may not slant the container.
Example 1:
Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example 2:
Input: height = [1,1]
Output: 1
Constraints:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
994 Rotting Oranges
You are given an m x n grid where each cell can have one of three values:
0 representing an empty cell,
1 representing a fresh orange, or
2 representing a rotten orange.
Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1.
Example 1:
Input: grid = [[2,1,1],[1,1,0],[0,1,1]]
Output: 4
Example 2:
Input: grid = [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.
Example 3:
Input: grid = [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 10
grid[i][j] is 0, 1, or 2.
15 3Sum
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
17 Letter Combinations of a Phone Number
Given a string containing digits from 2-9 inclusive, return all possible letter combinations that the number could represent. Return the answer in any order.
A mapping of digits to letters (just like on the telephone buttons) is given below. Note that 1 does not map to any letters.
Example 1:
Input: digits = “23”
Output: [“ad”,”ae”,”af”,”bd”,”be”,”bf”,”cd”,”ce”,”cf”]
Example 2:
Input: digits = “”
Output: []
Example 3:
Input: digits = “2”
Output: [“a”,”b”,”c”]
Constraints:
0 <= digits.length <= 4
digits[i] is a digit in the range [‘2’, ‘9’].
19 Remove Nth Node From End of List
Given the head of a linked list, remove the nth node from the end of the list and return its head.
Example 1:
Input: head = [1,2,3,4,5], n = 2
Output: [1,2,3,5]
Example 2:
Input: head = [1], n = 1
Output: []
Example 3:
Input: head = [1,2], n = 1
Output: [1]
Constraints:
The number of nodes in the list is sz.
1 <= sz <= 30
0 <= Node.val <= 100
1 <= n <= sz
Follow up: Could you do this in one pass?
20 Valid Parentheses
Given a string s containing just the characters ‘(‘, ‘)’, ‘{‘, ‘}’, ‘[’ and ‘]’, determine if the input string is valid.
An input string is valid if:
Open brackets must be closed by the same type of brackets.
Open brackets must be closed in the correct order.
Every close bracket has a corresponding open bracket of the same type.
Example 1:
Input: s = “()”
Output: true
Example 2:
Input: s = “()[]{}”
Output: true
Example 3:
Input: s = “(]”
Output: false
Example 4:
Input: s = “([])”
Output: true
Constraints:
1 <= s.length <= 104
s consists of parentheses only ‘()[]{}’.
21 Merge Two Sorted Lists
You are given the heads of two sorted linked lists list1 and list2.
Merge the two lists into one sorted list. The list should be made by splicing together the nodes of the first two lists.
Return the head of the merged linked list.
Example 1:
Input: list1 = [1,2,4], list2 = [1,3,4]
Output: [1,1,2,3,4,4]
Example 2:
Input: list1 = [], list2 = []
Output: []
Example 3:
Input: list1 = [], list2 = [0]
Output: [0]
Constraints:
The number of nodes in both lists is in the range [0, 50].
-100 <= Node.val <= 100
Both list1 and list2 are sorted in non-decreasing order.
22 Generate Parentheses
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
Example 1:
Input: n = 3
Output: [”((()))”,”(()())”,”(())()”,”()(())”,”()()()”]
Example 2:
Input: n = 1
Output: [”()”]
Constraints:
1 <= n <= 8
23 Merge k Sorted Lists
You are given an array of k linked-lists lists, each linked-list is sorted in ascending order.
Merge all the linked-lists into one sorted linked-list and return it.
Example 1:
Input: lists = [[1,4,5],[1,3,4],[2,6]]
Output: [1,1,2,3,4,4,5,6]
Explanation: The linked-lists are:
[
1->4->5,
1->3->4,
2->6
]
merging them into one sorted list:
1->1->2->3->4->4->5->6
Example 2:
Input: lists = []
Output: []
Example 3:
Input: lists = [[]]
Output: []
Constraints:
k == lists.length
0 <= k <= 104
0 <= lists[i].length <= 500
-104 <= lists[i][j] <= 104
lists[i] is sorted in ascending order.
The sum of lists[i].length will not exceed 104.
25 Reverse Nodes in k-Group
Given the head of a linked list, reverse the nodes of the list k at a time, and return the modified list.
k is a positive integer and is less than or equal to the length of the linked list. If the number of nodes is not a multiple of k then left-out nodes, in the end, should remain as it is.
You may not alter the values in the list’s nodes, only nodes themselves may be changed.
Example 1:
Input: head = [1,2,3,4,5], k = 2
Output: [2,1,4,3,5]
Example 2:
Input: head = [1,2,3,4,5], k = 3
Output: [3,2,1,4,5]
Constraints:
The number of nodes in the list is n.
1 <= k <= n <= 5000
0 <= Node.val <= 1000
Follow-up: Can you solve the problem in O(1) extra memory space?
543 Diameter of Binary Tre
Given the root of a binary tree, return the length of the diameter of the tree.
The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.
The length of a path between two nodes is represented by the number of edges between them.
Example 1:
Input: root = [1,2,3,4,5]
Output: 3
Explanation: 3 is the length of the path [4,2,1,3] or [5,2,1,3].
Example 2:
Input: root = [1,2]
Output: 1
Constraints:
The number of nodes in the tree is in the range [1, 104].
-100 <= Node.val <= 100
33 Search in Rotated Sorted Array
There is an integer array nums sorted in ascending order (with distinct values).
Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], …, nums[n-1], nums[0], nums[1], …, nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].
Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.
You must write an algorithm with O(log n) runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
All values of nums are unique.
nums is an ascending array that is possibly rotated.
-104 <= target <= 104
36 Valid Sudoku
Determine if a 9 x 9 Sudoku board is valid. Only the filled cells need to be validated according to the following rules:
Each row must contain the digits 1-9 without repetition.
Each column must contain the digits 1-9 without repetition.
Each of the nine 3 x 3 sub-boxes of the grid must contain the digits 1-9 without repetition.
Note:
A Sudoku board (partially filled) could be valid but is not necessarily solvable.
Only the filled cells need to be validated according to the mentioned rules.
Example 1:
Input: board =
[[“5”,”3”,”.”,”.”,”7”,”.”,”.”,”.”,”.”]
,[“6”,”.”,”.”,”1”,”9”,”5”,”.”,”.”,”.”]
,[”.”,”9”,”8”,”.”,”.”,”.”,”.”,”6”,”.”]
,[“8”,”.”,”.”,”.”,”6”,”.”,”.”,”.”,”3”]
,[“4”,”.”,”.”,”8”,”.”,”3”,”.”,”.”,”1”]
,[“7”,”.”,”.”,”.”,”2”,”.”,”.”,”.”,”6”]
,[”.”,”6”,”.”,”.”,”.”,”.”,”2”,”8”,”.”]
,[”.”,”.”,”.”,”4”,”1”,”9”,”.”,”.”,”5”]
,[”.”,”.”,”.”,”.”,”8”,”.”,”.”,”7”,”9”]]
Output: true
Example 2:
Input: board =
[[“8”,”3”,”.”,”.”,”7”,”.”,”.”,”.”,”.”]
,[“6”,”.”,”.”,”1”,”9”,”5”,”.”,”.”,”.”]
,[”.”,”9”,”8”,”.”,”.”,”.”,”.”,”6”,”.”]
,[“8”,”.”,”.”,”.”,”6”,”.”,”.”,”.”,”3”]
,[“4”,”.”,”.”,”8”,”.”,”3”,”.”,”.”,”1”]
,[“7”,”.”,”.”,”.”,”2”,”.”,”.”,”.”,”6”]
,[”.”,”6”,”.”,”.”,”.”,”.”,”2”,”8”,”.”]
,[”.”,”.”,”.”,”4”,”1”,”9”,”.”,”.”,”5”]
,[”.”,”.”,”.”,”.”,”8”,”.”,”.”,”7”,”9”]]
Output: false
Explanation: Same as Example 1, except with the 5 in the top left corner being modified to 8. Since there are two 8’s in the top left 3x3 sub-box, it is invalid.
39 Combination Sum
Given an array of distinct integers candidates and a target integer target, return a list of all unique combinations of candidates where the chosen numbers sum to target. You may return the combinations in any order.
The same number may be chosen from candidates an unlimited number of times. Two combinations are unique if the frequency of at least one of the chosen numbers is different.
The test cases are generated such that the number of unique combinations that sum up to target is less than 150 combinations for the given input.
Example 1:
Input: candidates = [2,3,6,7], target = 7
Output: [[2,2,3],[7]]
Explanation:
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
Example 2:
Input: candidates = [2,3,5], target = 8
Output: [[2,2,2,2],[2,3,3],[3,5]]
Example 3:
Input: candidates = [2], target = 1
Output: []
Constraints:
1 <= candidates.length <= 30
2 <= candidates[i] <= 40
All elements of candidates are distinct.
1 <= target <= 40
40 Combination Sum II
Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sum to target.
Each number in candidates may only be used once in the combination.
Note: The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8
Output:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5
Output:
[
[1,2,2],
[5]
]
Constraints:
1 <= candidates.length <= 100
1 <= candidates[i] <= 50
1 <= target <= 30