Reading 9 - Probability Concepts: Learning Outcomes Flashcards
Random variable
A random variable is a quantity whose outcome is uncertain.
Probability
Probability is a number between 0 and 1 that describes the chance that a stated event will occur.
Event
An event is a specified set of outcomes of a random variable.
Mutually exclusive events & Exhaustive events
Mutually exclusive events can occur only one at a time. Exhaustive events cover or contain all possible outcomes.
Two defining properties of a probability
The two defining properties of a probability are, first, that 0 ≤ P(E) ≤ 1 (where P(E) denotes the probability of an event E), and second, that the sum of the probabilities of any set of mutually exclusive and exhaustive events equals 1.
Empirical probability, subjective probability, and priori probability
A probability estimated from data as a relative frequency of occurrence is an empirical probability. A probability drawing on personal or subjective judgment is a subjective probability. A probability obtained based on logical analysis is an a priori probability.
Probability of an event
A probability of an event E, P(E), can be stated as odds for E = P(E)/[1 − P(E)] or odds against E = [1 − P(E)]/P(E).
Dutch book theorem
Probabilities that are inconsistent create profit opportunities, according to the Dutch Book Theorem.
Unconditional probability
A probability of an event not conditioned on another event is an unconditional probability. The unconditional probability of an event A is denoted P(A). Unconditional probabilities are also called marginal probabilities.
Conditional probability
A probability of an event given (conditioned on) another event is a conditional probability. The probability of an event A given an event B is denoted P(A | B).
Probability of both A and B occurring
The probability of both A and B occurring is the joint probability of A and B, denoted P(AB).
Probability of A given B
P(A | B) = P(AB)/P(B), P(B) ≠ 0.
Multiplication rule for probabilities
The multiplication rule for probabilities is P(AB) = P(A | B)P(B).
Probability that A or B occurs
The probability that A or B occurs, or both occur, is denoted by P(A or B).
Addition rule for probabilities
The addition rule for probabilities is P(A or B) = P(A) + P(B) − P(AB).
Independent vs. dependent events
When events are independent, the occurrence of one event does not affect the probability of occurrence of the other event. Otherwise, the events are dependent.
Multiplication rule for independent events
The multiplication rule for independent events states that if A and B are independent events, P(AB) = P(A)P(B). The rule generalizes in similar fashion to more than two events.
Total probability rule
According to the total probability rule, if S1, S2, …, Sn* are mutually exclusive and exhaustive scenarios or events, then *P*(*A*) = *P*(*A* | *S*1)*P*(*S*1) + *P*(*A* | *S*2)*P*(*S*2) + … + *P*(*A* | *Sn)P(S**n).
Expected value of a random variable
The expected value of a random variable is a probability-weighted average of the possible outcomes of the random variable. For a random variable X, the expected value of X is denoted E(X).
Total probability role for expected value
The total probability rule for expected value states that E(X) = E(X | S1)P(S1) + E(X | S2)P(S2) + … + E(X | Sn*)*P*(*Sn), where S1, S2, …, S**n are mutually exclusive and exhaustive scenarios or events.
Variance of a random variable
The variance of a random variable is the expected value (the probability-weighted average) of squared deviations from the random variable’s expected value E(X): σ2(X) = E{[X − E(X)]2}, where σ2(X) stands for the variance of X.
Variance
Variance is a measure of dispersion about the mean. Increasing variance indicates increasing dispersion. Variance is measured in squared units of the original variable.
Standard deviation
Standard deviation is the positive square root of variance. Standard deviation measures dispersion (as does variance), but it is measured in the same units as the variable.
Covariance
Covariance is a measure of the co-movement between random variables.


