Severity, Frequency and Aggregate Models Flashcards
kth raw moment
uk’=E(x^k)
kth central moment
uk=E((x-u)^k)
Variance(X)
u2=sigma^2
Covariance(X,Y)
COV(X,Y)=E(XY)-E(X)E(Y)
Coefficient of Variation
CV=sigma/u
Skewness
u^3/sigma^3
Kurtosis
u^4/sigma^4
Moment generating function
Mx(x)=E(e^tx)
Derivative of the Moment generating function
Mx^n(0)=E(X^n) where Mx^n is the nth derivative
Probability generating function
Px(z)=E(z^x)
Derivative of the probability generating function
Px^n(1)=E(X(X-1)…(X-n+1))
Conditional probability
Pr(A/B)=Pr(B/A)Pr(A)/Pr(B)
Law of total probability
Pr(X=x)=E(Pr(X=x/y))
Law of total Expectation
Ex(x)=E(E(X/Y))
Parametric Distributions - Special Distribution Shortcuts X-d/X>d
Pareto (alpha,theta)= Pareto (alpha, theta+d)
Exponential (theta)= Exponential (theta) memoryless distribution
Uniform (a,b)=Uniform (0, b-d)
Zero-Truncated Distribution
pn^t=(1/(1-p0))*pn
Expected value of a truncated distribution
E((N^t)^k)=(1/(1-p0))*E(N^k)
Zero-Modified Distributions
pn^m = (1-p0^m)/(1-p0)*pn
Expected value of a zero-modified distribution
E((N^m)^k)=(1-po^m)/(1-p0)*E(N^k)
(a,b,0) class
pn/pn-1=a+b/n for n=1,2…
Bernoulli shortcut (Mixtures ans Splices)
x=(a with pr=q and b with pr=1-q) then Var(X)=(a-b)^2q(1-q)
Poisson-Gamma Mixture
if x/lambda - Poisson(lambda) and lambda- Gamma(alpha, theta) then X follows a negative binomial (r=alpha, beta=theta)
Policy Limits, u
E((Y^l)^k)=E((x^u)^k)=integral from 0 to u of kx^(k-1)S(x)dx or integral from 0 to u of x^kf(X)dx +u^k*S(u)
Increased Limit Factor ILF
ILF=E(x^u)/E(x^b) where u=increased limit and b=original limit