Unit 1 Properties Flashcards
(38 cards)
1/sinx =
cscx
1/cosx
secx
1/tanx
cotx
pythag for sin
sin^2x+cos^2x=1
pythag for tan
1+tan^2x=sec^2x
pythag for cot
1+cot^2x=csc^2x
pythag for cos
sin^2x+cos^2x=1
pythag for sec
1+tan^2x=sec^2x
pythag for csc
1+cot^2x=csc^2x
d/dx(lnx) =
1/x for x>0
d/dx(log sub b of x) =
1/xlnb for x>0
d/dx(b^x) =
b^x * lnb
d/dx(secx) =
secx * tanx
d/dx(cscx) =
MINUS cscx * cotx
d/dx(tanx) =
sec^2x
d/dx(cotx) =
MINUS csc^2x
d/dx(sin^-1x) =
1 / root(1-x^2)
* or negative cos^-1
d/dx(cos^-1x) =
MINUS 1 / root(1-x^2)
* or negative sin^-1
d/dx(tan^-1x) =
1 / (1+x^2)
* or sin^-1/cos^-1 without root
d/dx(cot^-1x) =
MINUS 1 / (1+x^2)
* or negative tan^-1
derivative product rule
left d,right + right d,left
derivative quotient rule
low d,high - high d,low / low^2
d/dx(f(g(x))) chain rule
fprime(g(x)) * gprime(x)
∫(1/x)dx =
ln|x| + C