Animal Development Flashcards
(50 cards)
Development is determined by
zygote’s genome.
Molecules in the egg called
cytoplasmic determinants
Cell differentiation
the specialization of cells in structure and function.
Morphogenesis
the process by which an animal takes shape.
The first stage of development
gametogenesis (formation of gametes)
Formation of sperm
spermatogenesis.
Formation of eggs
oogenesis.
Production of primary oocytes
is complete before birth.
Production of mature gametes
ceases at 50
fertilization
process is the fusion of the sperm and egg to form a diploid zygote.
fertilization in sea urchins
The sperm’s contact with the egg’s surface initiates metabolic reactions in the egg that trigger the onset of embryonic development.
fertilization in sea urchins
- Acrosomal reaction is stimulated by contact with egg jelly (stimulatory molecules is fuses sulfate).
- Fuses sulfate binds to sperm and activates the Ca2+ transport channel
- Elevated Ca2+ triggers fusion of acrosome and cell membranes.4.Proteolytic enzymes digest a path through jelly coat to egg surface.5.Ca2+ influx also stimulates actin polymerization to form the acrosomal process
- Acrosomal process adheres to vitelline envelope via binding proteins found in egg membrane.
- Sperm Acrosomal process membrane fuses with egg membrane.
- The sperm’s nucleus, and centriole enters the egg after fusion occurs.
egg activation in sea urchins
- Ca2+ in the cytosol increases the rate of cellular respiration and protein synthesis by the egg cell.
- Collection of events are referred to as egg activation.
- Proteins and mRNAs needed for activation are already present in the egg.
- The sperm nucleus fuses with the egg nucleus, and cell division begins.
blocking polyspermry in sea urchins
- Ca2+ also triggers the cortical reaction.
- Cortical granules release their content via exocytosis.
- Hyalin and other enzymesseparate the vitelline envelope from the egg.
- Hyalin-sugar-rich molecule that attracts water via osmosis into the space between egg and vitelline envelope.
- Polyspermy-fusion of additional sperm to the fertilized egg.
fertilization in mammals
- Process is similar to sea urchins but much slower (12-36 hours).
- Sperm must travelthrough a layer of follicle cells.
- Egg outer layer is not a jelly coatbut rather a zona pellucida.
- Fertilization is internal.
formation of the fertilisation envelope in mammals
- Cortical granules release enzymes that harden the zona pellucida.
- Enzymes also strip the sperm receptors found in the egg membrane.
- Hyalinattracts water via osmosis.
**In sea urchins, sodium (Na+) influx changes membrane potential of the egg.
cleavage
- Fertilization is followed by cleavage, a period of rapid cell division without growth.
- Cleavage partitions the cytoplasm of one large cell into many smaller cells called blastomeres.
- The blastula is a ball of cells with a fluid-filled cavity.
- a fluid-filled cavity is called a blastocoel
Cleavage of egg with moderate to little yolk
- In species whose eggs have little or moderate amounts of yolk, such as sea urchins and mammals, cleavage occurs throughout the whole egg.
- This pattern is termed Holoblastic cleavage-complete division of the egg.
- Results in cells of equal size surrounding the blastocoel.
Cleavage in eggs with large yolk
- The yolk in these species slows down cell division and result in:
1. Meroblastic cleavage-incomplete division of the egg.
2. Occurs in species with yolk-rich eggs, such as reptiles and birds
Meroblastic cleavage
incomplete division of the egg
Cleavage patterns in frogs
- The egg yolk affects cleavage patterns.
- The eggs and zygotes of many animals, except mammals, have a definite polarity -defined by distribution of yolk:
- Vegetal pole has more yolk.
- Animal polehas less yolk. - The polarity causes unequal cell divisions.
- That results in the blastocoel forming entirely in the animal hemisphere
Establishment of body axes in frogs
- The three body axes are established by the egg’s polarityand by a cortical rotation following binding of the sperm
- The animal –vegetal asymmetry dictates where the anterior –posterior axis will form.
- Cleavage planes usually follow a pattern that is relative to the zygote’s animal and vegetal poles.
- Once the anterior-posteriorand dorsal-ventral axis are established, the right and left axis is fixed.
establishment of the body axes in chicks
- Gravity plays a part in establishing the anterior-posterior axis.
- pH levels between the two sides of the blastodermestablish the dorsal-ventral axis.
Gastrulation
- rearranges the cells of a blastula into a three-layered embryo called a gastrula.
- A Gastrulahas a primitive gut.
- The three layers produced by gastrulation are called embryonic germ layers.