Chapitre 4 : applications Flashcards

1
Q

definition de l’application

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

l’ensemble image

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

définition de deux applications égales

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

definition de l’application idendité

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

définition de l’image directe

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Définition de la préimage ou de l’image réciproque

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

la restriction d’une implication

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

définition du prolongement d’une implication

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

definition de la composee gof

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

composée d’applications

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

definition ho(gof)

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

composee d’une application avec identité

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

definition de l’injection

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

la composée de deux injections

A

est une injection

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

definition de la surjectivité

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

application de E et F(E)

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

la composée de deux surjection s

A

est une surjection

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

definition de la bijection

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

f est bijective ssi

A

f est injective et bijective

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

la composée de deux bijections

A

est une bijection

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

si f est une application injective de E dans F , alors

A

elle réalise une bijection de E dans F(E)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

F est fini et Card(E) = Card(F)

A

si f est une bijection de E dans F et si E est un ensemble fini

23
Q

theoreme sur une application qui est a la fois injective, surjective et bijective

24
Q

définition de l’application réciproque d’une bijection

25
théorème différentes égalités entre une bijection et son application réciproque
26
Théorème sur la reciproque fe la composée de bijection
27
théorème de la bijection monotone
28
théorème sur l’unique solution
29
30
31
32
33
34
35
démonstration
36
37
démonstration
38
démonstration
39
démonstration
40
41
42
démonstration
43
démonstration
44
d’apres th 11: (gof)^-1 = f^-1 o g^-1
45
46
47
f(E) =
48
49
50
consequence
51
consequence
52
53
54