Flashcards in Entropy Deck (29)

Loading flashcards...

1

## What is the second law of thermodynamics?

### Spontaneous changes result in an increase in disorder or entropy

2

## What does the second law of thermodynamics determine?

###
- Whether a physical or chemical change is likely to happen at a particular temperature

- Whether redox reactions will take place

- The position of equilibrum

3

## What is standard molar entropy?

### The entropy per mole of substance under standard conditions. Usually given the units J mol^-1 K^-1, and usually given per mole of atoms, not molecules

4

## Diamond has a lower value for standard molar entropy than lead, why is this?

### The carbon atoms in diamond are held in place by strong, highly directional covalent bonds, but the metallic bonding in lead is not directional so atoms can vibrate more freely and share out their energy in more ways than carbon atoms in diamond

5

## Lead has a higher standard molar entropy than iron, why is this?

### In hard solids, the atoms have rigid structures with stiff bonds and the thermal motion of the atoms is very restricted so entropy of a hard solid like iron is lower than lead which is soft. In soft solids, there is more thermal disorder and entropy is larger

6

## Why is the standard molar entropy of liquids generally higher than solids?

### Atoms or molecules are freer to move and there are more ways of distributing the particles and energy so there is more disorder.

7

## Why is the standard molar entropy of gases generally higher than liquids?

### The atoms or molecules are free to move but are also very widely spaced, so there are even more ways of distributing the particles and energy so the disorder is even greater

8

## Why are more complicated molecules higher in entropy than simpler molecules?

### More energy levels are available in a complicated molecule, so they can vibrate, rotate and arrange themselves in more ways

9

## What is the equation for ΔSsystem which concerns standard molar entropies of reactants and products?

### ΔSsys = ΣSproducts - ΣSreactants

10

## What is the equation for ΔStotal which concerns ΔSsys and ΔSsurr?

### ΔStotal = ΔSsys + ΔSsurr

11

## ΔSsurr is positive for which type of reaction?

### Exothermic reactions

12

## ΔSsurr is negative for which type of reaction?

### Endothermic reactions

13

## What effect does the temperature of the surroundings have on the value for increase in entropy?

###
Entropy increase is small because the molecules have high entropy and the area is already in chaotic motion.

The opposite is true if the surroundings are cold.

The entropy change in the surroundings caused by transfer of heat depends on the value of the heat change and is also inversely proportional to the temperature of the surroundings

14

## What is the equation which concerns ΔSsurr, ΔH and temperature?

###
ΔSsurr = -ΔH / T

Temperature measured in K, enthalpy has to be in Jmol^-1

15

## What is the equation which concerns ΔStotal, ΔSsys, ΔH and T?

### ΔStotal = ΔSsys - (ΔH/T)

16

## For a spontaneous reaction, is ΔStotal positive or negative?

### Positive

17

## What happens if ΔStotal is zero?

### It is in equilibrium/balanced - becomes very sensitive to temperature and could go either way

18

## What is the definition of a spontaneous reaction?

### A spontaneous reaction is one for which the total entropy change is positive

19

## Mathematically, why do most exothermic reactions tend to go at about room temperature?

### -ΔH/T is much larger and more positive than ΔSsys, so ΔStotal is positive

20

## Under what conditions (to do with the equation for entropy) can an endothermic reaction be feasible?

### If the increase in the entropy of the system is greater than the decrease of the entropy of the surroundings

21

## Mathematically, why might a reaction that doesn't go at room temperature become feasible as temperature rises?

### ΔSsurr decreases in magnitude as T increases

22

## What is the minimum value for ΔStotal for which reactions tend to go to completion?

### 200 J mol^-1 K^-1

23

## What is the equation for ΔG that concerns ΔH, T and ΔSsys?

### ΔG = ΔH - TΔSsys

24

## Does a positive or negative value for ΔG indicate a feasible reaction?

### Negative

25

## What happens if ΔG = 0?

### The reaction is at equilibrium

26

## What is the equation for ΔG that concerns T and K (equilibrium constant)?

### ΔG = -RTlnK

27

## When ΔG becomes more negative than a certain value (approx. -40kJ mol^-1), what happens to K and what does that indicate?

### K becomes so large that the reaction has effectively gone to completion

28

## When ΔG becomes more positive than a certain value (approx. 40 kJ mol^-1), what happens to K and what does that indicate?

### K becomes so small that equilibrium lies almost entirely to the reactants' side, so hardly any of the reactants wil actually react

29