Fonctions trigo Flashcards

(7 cards)

1
Q

Fonction Sinus et Arcsinus

A

Sin :
Df = [-pi/2;pi/2] -> [-1;1] Impaire et bijective sin’ = cos
Arcsin, réciproque de sin.
Df inverse de sin, Arcsin’ = 1/cos(Arcsin(x)) = 1/rac(1-x^2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Fonction Cos et Arccos

A

Cos :
Df [0;pi] -> [-1;1], paire, bijective cos’=-sin
Arccos :
Df inverse, bijective Arccos’= -1/sin(Arccos(x)) = -1/rac(1-x^2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Fonction tangente et arctang

A

tan :
Df ]-pi/2;pi/2[ -> R croissante et bijective tan’ = 1/cos^2(x) = 1+tan^2
Arctan :
Df inverse de tan, arctan’ = 1/1+tan^2(arctan(x)) = 1/1+x^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Fonction sh et argsh

A

sh :
Df R -> R, bijective, impaire sh’ = ch
argsh :
Df inverse, argsh’ = 1/rac(1+x^2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Fonction ch et argch

A

ch :
Df R -> [1;+[, paire, surjective ch’ = sh
Argch :
Df inverse, argch’ = 1/rac(x^2 - 1)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Fonction th et arg th

A

th :
Df R -> ]-1;1[, impaire, bijective th’ = 1/ch^2 = 1-th^2
argth :
Df inverse, argth’ = 1/1-x^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Fonction coth et argcoth

A

coth = 1/th :
Df R* -> ]-inf;-1[U]1;+inf[ coth’ = -1/sh^2 = 1-coth^2
argcoth :
Df inverse, argcoth’ = 1/1-x^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly