genetics 1 Flashcards
(303 cards)
proband
The affected member through whom a family with a genetic disorder is brought to attention
consultand
the person who brings the family to attention (can be affected or unaffected)
consanguineous matings
Couples who have >1 known ancestors in common r
Single-gene disorders
(also called Mendelian disorders) often present with characteristic and recognizable patterns in pedigrees. These are important patterns to recognize clinically
phenotypes
the observable expression (of a genotype) as a morphological, clinical, cellular, or biochemical trait
Genotype
the set of alleles that make up his or her genetic constitution (usually we are talking about a single locus)
meiosis
a type of cell division in which diploid germ line cells give rise to haploid gametes. Prior to the initiation of meiosis, cells complete one round of DNA replication. The cells then undergo two successive rounds of chromosome segregation without an intervening round of DNA replication. Thus, the chromosome content is reduced from 4n to 2n in the first meiotic division, and from 2n to n in the second meiotic division, where n is the euploid number of chromosomes.
Two key differences between mitosis and meiosis
i) paternally- and maternally-derived homologous chromosomes pair at the onset of meiosis (prophase I), whereas the two homologs segregate independently in mitosis; and ii) reciprocal recombination events between maternal and paternal sister chromatids generate chiasmata (physical linkages) between homologs. In contrast, recombination between homologs is rare during mitosis.
Meiotic prophase I
Maternal and paternal homologs of each chromosome become paired or synapsed along their entire lengths, forming structures known as “bivalents”. This process requires the formation of a proteinaceous structure called the synaptonemal complex, which promotes inter-homolog interactions. Reciprocal recombination events occurring at this stage generate physical links between homologs. These attachments, or crossovers, are also known as chiasmata. On average, 2-3 crossovers occur on each chromosome, resulting in genetic reassortment between chromosomes. Importantly, the synaptonemal complex disassembles at the end of prophase I, and bivalents are therefore held together only by chiasmata.
first meiotic division
homologs are segregated to opposite poles of the cell. Meiosis I is the most error-prone step of the process, and chromosome nondisjunction at this stage is the most frequent mutational mechanism in humans.
Meiosis II
Unlike mitosis, chromosomes undergo a second round of segregation in meiosis II without an intervening round of DNA replication. Meiosis II is very much like a mitotic division.
Genetic consequences of meiosis
reduction in chromosome number from diploid to haploid, random segregation of homologous chromosomes, giving ~8x106 (or 223 ; 2 homologs for each of 23 chromosomes) different possibilities, random shuffling of genetic material due to crossover events, resulting in a vast increase in genetic variability from the above estimate
Mitosis
one round of chromosome segregation, resulting in daughter cells identical in chromosomal content to the parental cell, DNA replication precedes each round of chromosome segregation, no pairing of homologous chromosomes, infrequent recombination, centromeres on paired sister chromatids segregate at each anaphase, occurs in somatic cells and in germ line precursor cells prior to entry into meiosis
Meiosis
two rounds of chromosome segregation without an intervening round of DNA replication, parental cells must be diploid and the chromosome number is halved in the resultant cells, requires the pairing of homologous chromosomes and recombination for its successful completion, centromeres on paired sister chromatids divide only at anaphase II in a normal meiosis,occurs only in the germ line
Metacentric
the centromere is located in the middle of the chromosome, such that the two chromosome arms are approximately equal in length.
Submetacentric
the centromere is slightly removed from the center.
Acrocentric
the centromere is near one end of the chromosome. There are five in the human genome. In an acrocentric chromosome the p arm contains genetic material including repeated sequences such as nucleolar organizing regions, and can be translocated without significant harm, as in a balanced Robertsonian translocation. They also have distinctive masses of chromatin known as satellites attache dto their short arms by narrow stalks. These stalks contain hundresds of copies of genes encoding ribosomal rna and a variaty of repeptive sequences.
telocentric
the centromere is at one end and only have a single arm. This does not occur in normal human karyotypes.
cytogenetically
a branch of genetics that is concerned with the study of the structure and function of the cell, especially the chromosomes. It includes routine analysis of G-banded chromosomes, other cytogenetic banding techniques, as well as molecular cytogenetics such as fluorescent in situ hybridization (FISH) and comparative genomic hybridization (CGH).
Short arm locations
p (petite)
long arm locative
q
chromosomal regions
Each chromosome is considered to be divided into different regions labeled p1, p2, p3; q1, q2, q3 etc., counting outwards from the centromere. Chromosomal regions are defined by specific landmarks (distinct morphological features) that include telomeres, centromeres, and banding patterns. Depending on the level of microscopic resolution, regions are subdivided into bands labeled p11 (pronounced “one-one”, not eleven!), p12, p13, and then p11.1 (p one-one point one), again counting outwards from the centromere. The centromere is designated “cen” and the telomere “tel”. It is conventional to refer to relative chromosomal locations in terms of proximity to the centromere. Thus, proximal 2q means the segment of the long arm of chromosome 2 that is closest to the centromere, and distal Xp means the portion of X most distant from the centromere, and therefore closest to the telomere.
Triploidy
Triploidy is a rare chromosomal abnormality. Fetuses with Triploidy, or Triploid Syndrome, have an extra set of chromosomes in their cells. One set of chromosomes has 23 chromosomes and is called a haploid set. Two sets, or 46 chromosomes, are called a diploid set. Three sets, or 69 chromosomes, are called a triploid set.
Trisomy
the situation in which an extra copy of an entire chromosome is present in the cell. There is variation among trisomies with regard to the parent and meiotic stage of origin of the additional chromosome. In general, however, maternal errors in the first meiotic division predominate among almost all trisomies. In addition, increasing maternal age, or more exactly, the proximity to menopause, is thought to be a significant risk factor for most, if not all, trisomies.