Introductory Number Sense (new curriculum k-2), Introduction au sens du nombre (nouveau programme de la maternelle à la 2e année) Flashcards

(40 cards)

1
Q

How many = what ________

What is the term for the number of objects in a set; can be represented by objects, pictures, words, and numerals.

How do you determine this number of objects in a set?

Combien = quelle ______

Quel est le terme pour désigner le nombre d’objets dans un ensemble ; il peut être représenté par des objets, des images, des mots et des chiffres.

Comment déterminer ce nombre d’objets dans un ensemble ?

A

quantity

Quantity can be determined by counting and is always counted using the same sequence of words that come in an unchanging (stable) order. E.g. 2 is always one greater than 1, and this does not change.

You can begin counting at any number, but quantity is most easily determined by new students to math by counting by ones and using the final number said. You can skip count by counting in twos for example, which is faster than counting by ones, and as you grow you will have many ways of determining quantity, including multiplication based on the pattern you see in the objects.

With money it is common to skip count in 25s, since we have a physical coin that is 25 cents. You will notice that the skip count you choose will depend on how the objects are grouped.

You can also “subitize” which means recognizing smll quantities at a glance. For example, you can immediately see 5 without having to count each object. Putting objects into small arrangements where they can be subitized can help you count larger numbers.

quantité

La quantité peut être déterminée en comptant et est toujours comptée en utilisant la même séquence de mots qui viennent dans un ordre immuable (stable). Par exemple, 2 est toujours un plus grand que 1, et cela ne change pas.

On peut commencer à compter à partir de n’importe quel nombre, mais la quantité est plus facilement déterminée par les nouveaux élèves en comptant par 1 et en utilisant le nombre final dit. Vous pouvez sauter le comptage en comptant par deux, par exemple, ce qui est plus rapide que de compter par un, et au fur et à mesure que vous grandirez, vous aurez de nombreuses façons de déterminer la quantité, y compris la multiplication basée sur le modèle que vous voyez dans les objets.

Avec l’argent, il est courant de compter par bonds de 25, puisque nous disposons d’une pièce de 25 cents. Vous remarquerez que le saut de comptage que vous choisissez dépend de la façon dont les objets sont groupés.

Vous pouvez également “subitiser”, c’est-à-dire reconnaître de petites quantités d’un seul coup d’œil. Par exemple, vous pouvez immédiatement voir 5 sans avoir à compter chaque objet. Le fait de placer les objets dans de petits arrangements où ils peuvent être subitisés peut vous aider à compter des nombres plus importants.

directly from Latin quantitatem (nominative quantitas) “relative greatness or extent,” coined as a loan-translation of Greek posotes (from posos “how great? how much?”) from Latin quantus “of what size? how much? how great? what amount?,” correlative pronominal adjective (from PIE root *kwo-, stem of relative and interrogative pronouns).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

A symbol or group of symbols used to represent a number

Symbole ou groupe de symboles utilisé pour représenter un nombre

A

numeral

un numéral

1520s, “word expressing a number,” from French numéral (15c.), from Late Latin numeralis “of or belonging to a number,” from Latin numerus “a number” (see number (n.)). Meaning “figure or character standing for a number” is from 1680s. As an adjective, “expressing number,” from late 14c.

Old English numerals past 20 (e.g. seofan and twentig) were formed as in modern German; the modern English pattern likely is from influence of French (vingt-sept).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

How do you represent the absence of quantity?

Comment représenter l’absence de quantité ?

absence = “state of not being present,” late 14c., from Old French absence “absence” (14c.), from Latin absentia, abstract noun from absentem (nominative absens), present participle of abesse “be away from, be absent,” from ab “off, away from” (see ab-) + esse “to be” (from PIE root *es- “to be”)

A

0

Places that have no value within a given number use zero as a placeholder.

0

Les lieux qui n’ont pas de valeur à l’intérieur d’un nombre donné utilisent le zéro comme substitut.

value = from Old French value “worth, price, moral worth; standing, reputation” (13c.), noun use of fem. past participle of valoir “be worth,” from Latin valere “be strong, be well; be of value, be worth” (from PIE root *wal- “to be strong”).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

the type of number that can represent an object in a set

= {1, 2, 3, …}

le type de nombre qui peut représenter un objet dans un ensemble

= {1, 2, 3, …}

A

The counting numbers are called natural numbers.

Les nombres à compter sont appelés nombres naturels.

natural = from Old French naturel “of nature, conforming to nature; by birth,” and directly from Latin naturalis “by birth, according to nature,” from natura “nature”

nature = from Old French nature “nature, being, principle of life; character, essence,” from Latin natura “course of things; natural character, constitution, quality; the universe,” literally “birth,” from natus “born,” past participle of nasci “to be born” (from PIE root *gene- “give birth, beget”).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

What are the values of the places in a four-digit natural number?

Quelles sont les valeurs des places dans un nombre naturel à quatre chiffres ?

A

thousands, hundreds, tens, ones

milliers, centaines, dizaines, unités

thousand = Old English þusend, from Proto-Germanic *thusundi (source also of Old Frisian thusend, Dutch duizend, Old High German dusunt, German tausend, Old Norse þusund, Gothic þusundi). This is reconstructed as *thus-hund-, from a PIE compound meaning “indefinite great number, great multitude” and etymologically “great hundred, swollen hundred.”

hundred = from Proto-Germanic *hunda-ratha- (source also of Old Frisian hundred, Old Saxon hunderod, Old Norse hundrað, German hundert); first element is Proto-Germanic *hundam “hundred” (cognate with Gothic hund, Old High German hunt), from PIE *km-tom “hundred,” reduced from *dkm-tom-

ten = Old English ten (Mercian), tien (West Saxon), adjective and noun, from Proto-Germanic *tehun (source also of Old Saxon tehan, Old Norse tiu, Danish ti, Old Frisian tian, Old Dutch ten, Dutch tien, Old High German zehan, German zehn, Gothic taihun “ten”), from PIE root *dekm- “ten.”

one = from Old English an (adjective, pronoun, noun) “one,” from Proto-Germanic *ainaz (source also of Old Norse einn, Danish een, Old Frisian an, Dutch een, German ein, Gothic ains), from PIE root *oi-no- “one, unique.”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

number line

droite numérique

A
  • you can plot points on it
  • each real number has exactly one point on the number line (a given real number can only be plotted in one spot, not anymore than that)
  • on peut y tracer des points
  • chaque nombre réel a exactement un point sur la droite numérique (un nombre réel donné ne peut être tracé qu’à un seul endroit, pas plus)

line = a Middle English merger of Old English line “cable, rope; series, row, row of letters; rule, direction,” and Old French ligne “guideline, cord, string; lineage, descent” (12c.), both from Latin linea “linen thread, string, plumb-line,” also “a mark, bound, limit, goal; line of descent,” short for linea restis “linen cord,” and similar phrases, from fem. of lineus (adj.) “of linen,” from linum “linen” (see linen).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

The 6 in this natural number represents what value?

6234

Le 6 de ce nombre naturel représente quelle valeur ?

6234

A

The 6 is in the thousands place, so there are six one thousands, so the 6 represents six thousand.

Digit = 6
Place value = 1000
Value = 6000

Le 6 est à la place des milliers, il y a donc six mille, le 6 représente donc six mille.

Chiffre = 6
Valeur de place = 1000
Valeur = 6000

digit = from Latin digitus “finger or toe” (also with secondary meanings relating to counting and numerals), considered to be related to dicere “to say, speak” (from PIE root *deik- “to show,” also “pronounce solemnly”)

value = from Old French value “worth, price, moral worth; standing, reputation” (13c.), noun use of fem. past participle of valoir “be worth,” from Latin valere “be strong, be well; be of value, be worth” (from PIE root *wal- “to be strong”).

place = from Medieval Latin placea “place, spot,” from Latin platea “courtyard, open space; broad way, avenue,” from Greek plateia (hodos) “broad (way),” fem. of platys “broad,” from PIE root *plat- “to spread.”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

The 2 in this natural number represents what value?

1234

Le 2 de ce nombre naturel représente quelle valeur ?

1234

A

The 2 is in the hundreds place, so there are 2 hundreds, so the 2 represents two hundred.

Le 2 est à la place des centaines, il y a donc 2 centaines, le 2 représente donc deux cents.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

The 3 in this natural number represents what value?

1234

Le 3 de ce nombre naturel représente quelle valeur ?

1234

A

The 3 is in the tens place, so there are 3 tens, so the 3 represents thirty.

Le 3 est à la place des dizaines, il y a donc 3 dizaines, le 3 représente donc trente.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

What is the value of the 4 in the following natural number?

1234

Quelle est la valeur du 4 dans le nombre naturel suivant ?

1234

A

The 4 is in the ones place, so there are 4 ones, so it represents four.

Le 4 est à la place des 1, il y a donc 4 1, il représente donc 4.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

What is the name for the number set that includes the natural numbers {1,2,3,….} and 0.

Quel est le nom de l’ensemble de nombres qui comprend les entiers naturels {1,2,3,….} et 0.

A

whole number

All of these can be plotted on a number line

nombre entier

Tous ces éléments peuvent être représentés sur une droite numérique.

whole = Middle English hole, from Old English hal “entire, whole; unhurt, uninjured, safe; healthy, healed, sound; genuine, straightforward,” from Proto-Germanic *haila- “undamaged” (source also of Old Saxon hel, Old Norse heill, Old Frisian hal, Middle Dutch hiel, Dutch heel, Old High German, German heil “salvation, welfare”), from PIE *kailo- “whole, uninjured, of good omen” (source also of Old Church Slavonic celu “whole, complete;

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Count by ones up to 100

Compter par un jusqu’à 100

A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
….
89
90
91
92
93
94
95
96
97
98
99
100

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

skip count by 20s up to 1000

Sauter le compte par 20s jusqu’à 1000

A

20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320

920
940
960
980
1000

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

skip count by 25s up to 1000

Sauter le compte par 25s jusqu’à 1000

A

25
50
75
100
125
150
175
200
225
250

875
900
925
950
975
1000

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

skip count by 50s up to 1000

Sauter le compte par 50s jusqu’à 1000

A

50
100
150
200
250
300
350

800
850
900
950
1000

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

skip count by 2s up to 1000

compter par 2 jusqu’à 1000

A

2
4
6
8
10
12
14
16
18
20
22

98
100
102
104
106
108
110
112
….
888
890
892
894
896
898
900
902

980
982
984
986
988
990
992
994
996
998
1000

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

skip count by 10s

sauter le comptage par 10

A

10
20
30
40
50
60
70
80
100
110
120
….
820
840
860
880
900
920
940
960
980
1000

18
Q

skip count by 10s starting at 12; up to 1000 but not over 1000

compter par bonds de 10 en commençant par 12 ; jusqu’à 1000 mais pas plus de 1000

A

12
22
32
42
52
62
72
82
92
102

902
912
922
932
942
952
962
972
982
992

19
Q

Partitioning a quantity into a certain number of groups

Répartition d’une quantité en un certain nombre de groupes

A

sharing

division is a specific example of sharing where the specific number groups also have an equal number within the group

partage

la division est un exemple spécifique de partage où les groupes de nombre spécifique ont également un nombre égal au sein du groupe

“to apportion to someone as his share; to apportion out to others; to enjoy or suffer (something) with others,” from share (n.1). The meaning “to divide one’s own and give part to others” is recorded from 1590s; also “have a part, get one’s portion;” also, of two or more, “to each take a portion.”

20
Q

Partitioning a quantity into groups of a certain size

Répartition d’une quantité en groupes d’une certaine taille

A

grouping

regroupement

grouping = “act, process, or result of arranging in a group,” 1748, verbal noun from group (v.).

group = 1690s, originally an art criticism term, “assemblage of figures or objects forming a harmonious whole in a painting or design,” from French groupe “cluster, group” (17c.), from Italian gruppo “group, knot,” which probably is, with Spanish grupo, from a Germanic source, from Proto-Germanic *kruppaz “round mass, lump,” part of the general group of Germanic kr- words with the sense “rounded mass”

21
Q

Count backwards from 20

Compter à rebours à partir de 20

A

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

22
Q

skip count by 5s up to 100

compter par 5 jusqu’à 100

A

5
10
15
20
25
30
35

80
85
90
95
100

23
Q

All natural numbers are either even or _________.

Tous les nombres naturels sont soit pairs, soit _________.

A

[odd]

even = you can evenly make groups of two without any left over
odd = one more than even, so you will have one left over if you try to make groups of two

[impairs]

pair = vous pouvez faire des groupes de deux sans qu’il en reste.
impair = un de plus que pair, il en restera donc un si vous essayez de faire des groupes de deux

odd = c. 1300, odde, “constituting a unit in excess of an even number,” from Old Norse oddi “third or additional number,” as in odda-maðr “third man, odd man (who gives the casting vote),” odda-tala “odd number.” The literal meaning of Old Norse oddi is “point of land, angle” (related via notion of “triangle” to oddr “point of a weapon”); from Proto-Germanic *uzdaz “pointed upward” (source also of Old English ord “point of a weapon, spear, source, beginning,” Old Frisian ord “point, place,” Dutch oord “place, region,” Old High German ort “point, angle,” German Ort “place”), from PIE *uzdho- (source also of Lithuanian us-nis “thistle”). None of the other languages, however, shows the Old Norse development from “point” to “third number.” Used from late 14c. to indicate a surplus over any given sum.

even = Old English efen “level,” also “equal, like; calm, harmonious; equally; quite, fully; namely,” from Proto-Germanic *ebna- (source also of Old Saxon eban, Old Frisian even “level, plain, smooth,” Dutch even, Old High German eban, German eben, Old Norse jafn, Danish jævn, Gothic ibns).

24
Q

What are examples of comparison words of quantity?

Quels sont les exemples de mots de comparaison de quantité ?

A

Relative quantities:
- more, greater than, >
- less, less than, <
- same, equal, =, equality
- different, not equal, ≠, inequality

Purpose or need:
- enough
- not enough

Quantités relatives :
- plus, plus grand que, >
- moins, moins que, <
- même, égal, =, égalité
- différent, pas égal, ≠, inégalité

But ou besoin :
- assez
- pas assez

25
Define equality in math. How can you model equality? Définir l'égalité en mathématiques. Comment modéliser l'égalité ?
a balance between two quantities can be modeled with a balance when equal, the balance is level un équilibre entre deux quantités peut être modélisé par une balance lorsqu'elle est égale, la balance est à niveau ## Footnote equality = late 14c., "evenness, smoothness, uniformity;" c. 1400 in reference to amount or number; from Old French equalité "equality, parity" (Modern French égalité, which form dates from 17c.), from Latin aequalitatem (nominative aequalitas) "equality, similarity, likeness" (also sometimes with reference to civil rights), from aequalis "uniform, identical, equal" equal = "identical in amount, extent, or portion;" early 15c., "even or smooth of surface," from Latin aequalis "uniform, identical, equal," from aequus "level, even, flat; as tall as, on a level with; friendly, kind, just, fair, equitable, impartial; proportionate; calm, tranquil," which is of unknown origin.
26
What are all the ways to make a sum of 5 using the natural numbers? Quelles sont toutes les façons de faire une somme de 5 en utilisant les nombres naturels ? ## Footnote sum = somme, summe, "a quantity or amount of money," from Anglo-French and Old French summe, somme "amount, total; collection; essential point; summing up, conclusion" (13c., Modern French somme), from Latin summa "the top, summit; chief place, highest rank; main thing, chief point, essence, gist; an amount (of money)."
1 and 4 2 and 3 1 and 1 and 1 and 1 and 1 1 and 1 and 1 and 2 1 and 1 and 3 Since addition is commutative, you can move these around on a line and still get a sum of 5. 1 et 4 2 et 3 1 et 1 et 1 et 1 et 1 1 et 1 et 1 et 2 1 et 1 et 3 L'addition étant commutative, vous pouvez les déplacer dans leur rangée et obtenir une somme de 5.
27
What are all the ways to make a sum of 10 using two natural numbers?
1 and 9 2 and 8 3 and 7 4 and 6 5 and 5 Since addition is commutative, you can move them in their row and get a sum of 10. 1 et 9 2 et 8 3 et 7 4 et 6 5 et 5 L'addition étant commutative, vous pouvez les déplacer dans leur rangée et obtenir une somme de 10.
28
Combining parts to find the whole, or increasing an existing quantity, composition Combinaison de parties pour obtenir un tout, ou augmentation d'une quantité existante, composition
addition + addition + | joining ## Footnote addition = "action of adding numbers;" c. 1400, "that which is added," from Old French adition "increase, augmentation" (13c.), from Latin additionem (nominative additio) "an adding to, addition," noun of action from past-participle stem of addere "add to, join, attach" add = "to join or unite (something to something else)," from Latin addere "add to, join, attach, place upon," literal and figurative, from ad "to" (see ad-) + -dere, combining form meaning "to put, place," from dare "to give" (from PIE root *do- "to give").
29
comparing two quantities, taking away one quantity from another, or finding a part of a whole, decomposition of a quantity comparer deux quantités, retirer une quantité d'une autre, ou trouver une partie d'un tout, décomposition d'une quantité
subtraction - soustraction - | pull out from under ## Footnote subtraction = subtracioun, "withdrawal, removal" (a sense now obsolete), from Late Latin subtractionem (nominative subtractio) "a drawing back, taking away," from past participle stem of Latin subtrahere "take away, draw off, draw from below," from sub "from under" (see sub-) + trahere "to pull, draw" (see tract (n.1)). The arithmetical sense of "the taking of one quantity or number from another" is attested from early 15c.
30
Define and give an example of associative property 2 + 6 + 8 Définir et donner un exemple de propriété associative
the order in which more than two numbers are added does not affect the sum, so a sum can be composed in multiple ways For example 2, 6, and 8 can be added in these ways (where you add what is in the brackets first) (2+6) + 8 2 + (6+8) (2+8) + 6 One of these ways to add might be easier for you. For me, I prefer the third one since I know the ways to make ten include a 2 and 8, so I can immediately see 10 + 6, and that is easy to make 16. L'ordre dans lequel plus de deux nombres sont ajoutés n'affecte pas la somme, de sorte qu'une somme peut être composée de plusieurs façons. Par exemple, 2, 6 et 8 peuvent être additionnés de la manière suivante (en ajoutant d'abord ce qui est entre parenthèses) (2+6) + 8 2 + (6+8) (2+8) + 6 L'une de ces façons d'additionner peut être plus facile pour vous. Pour ma part, je préfère la troisième, car je sais que les façons de faire dix comprennent un 2 et un 8. Je vois donc immédiatement 10 + 6, et il est facile de faire 16. ## Footnote associative = "resulting from association," 1804, from associate (v.) + -ive. associate = "join in company, combine intimately" (transitive), from Latin associatus past participle of associare "join with," from assimilated form of ad "to" (see ad-) + sociare "unite with," from socius "companion, ally" (from suffixed form of PIE root *sekw- (1) "to follow"). property = from an Anglo-French modification of Old French proprete, "individuality, peculiarity; property" (12c., Modern French propreté) and directly from Latin proprietatem (nominative proprietas) "ownership, a property, propriety, quality," literally "special character" (a loan-translation of Greek idioma), noun of quality from proprius "one's own, special"
31
Addition and subtraction strategies Stratégies d'addition et de soustraction
e.g. 2 + 8 counting on: 3,4,5,6,7,8,9,10 using 8 fingers and counting from 3 counting back: 2 + 10 is two more than 2 + 8, and 2+10 is 12, so 2 + 8 is two less than 12, or 10 decomposition: break down the numbers and fit the pieces back together to form the full picture 2 + 8 = 2 + 4 + 4 = 6 + 4 = 10 compensation: adding a number to one and subtracting it from the other later on to make sure the balance stays the same, so 2 + 8 = 3 + 7 = 4 + 6 = 5 + 5 = 10 making tens: 2 + 8 = 10 we already have this strategy embedded in the example, but if it was 2 + 9 we would know that is one more than 10 because we know 9 is one more than the number needed with 2 to make 10 par exemple 2 + 8 compter sur : 3,4,5,6,7,8,9,10 en utilisant 8 doigts et en comptant à partir de 3 comptage à rebours : 2 + 10, c'est deux de plus que 2 + 8, et 2 + 10, c'est 12, donc 2 + 8, c'est deux de moins que 12, soit 10 décomposition : décomposer les nombres et recomposer les pièces pour obtenir une image complète 2 + 8 = 2 + 4 + 4 = 6 + 4 = 10 compensation : ajouter un nombre à l'un et le soustraire de l'autre par la suite pour s'assurer que l'équilibre reste le même, ainsi 2 + 8 = 3 + 7 = 4 + 6 = 5 + 5 = 10 faire des dizaines : 2 + 8 = 10 nous avons déjà intégré cette stratégie dans l'exemple, mais s'il s'agissait de 2 + 9, nous saurions que c'est un de plus que 10 parce que nous savons que 9 est un de plus que le nombre nécessaire avec 2 pour faire 10.
32
commutative property propriété commutative
the order in which two quantities are added does not affect the sum Keep in mind that the order in which two quantities are subtracted does affect the difference! l'ordre dans lequel deux quantités sont ajoutées n'affecte pas la somme N'oubliez pas que l'ordre dans lequel deux quantités sont soustraites a une incidence sur la différence ! | commute = to change or transform ## Footnote commutative = "relating to exchange, interchangeable, mutual," 1530s, from Medieval Latin commutativus, from Latin commutat-, past participle stem of commutare commute = mid-15c., "to change (something into something else), transform," from Latin commutare "to often change, to change altogether," from com-, here perhaps an intensive prefix (see com-), + mutare "to change" (from PIE root *mei- (1) "to change, go, move"). Meaning "go back and forth to work" is attested by 1889
33
opposite mathematical operation to addition opération mathématique opposée à l'addition
subtraction soustraction
34
whole entier
everything so the parts 2 and 8 make a sum of 10, everything that is there is 10, so 10 is the whole Can be a whole set of objects, or a whole object that can be partitioned into a number of equal parts A whole can be any size and is designated by context tout donc les parties 2 et 8 font une somme de 10, tout ce qui est là est 10, donc 10 est le tout Il peut s'agir d'un ensemble d'objets ou d'un objet entier qui peut être divisé en un certain nombre de parties égales. Un tout peut être de n'importe quelle taille et est désigné par le contexte
35
part la partie
a portion of the whole une partie de l'ensemble ## Footnote part = mid-13c., "division, portion of a whole, element or constituent (of something)," from Old French part "share, portion; character; power, dominion; side, way, path," from Latin partem (nominative pars) "a part, piece, a share, a division; a party or faction; a part of the body; a fraction; a function, office," related to portio "share, portion," from PIE root *pere- (2) "to grant, allot."
36
fact family familles de faits
a group of related addition and subtraction number facts E.g. 2 + 8 = 10 8 + 2 = 10 10 - 2 = 8 10 - 8 = 2 Multiplication and division also share facts to make multiplication and division families. un groupe de faits relatifs à l'addition et à la soustraction de nombres. Par exemple 2 + 8 = 10 8 + 2 = 10 10 - 2 = 8 10 - 8 = 2 La multiplication et la division partagent également des faits pour former des familles de multiplication et de division. ## Footnote fact = The modern, empirical, sense of "thing known to be true, a real state of things, what has really occurred or is actually the case," as distinguished from statement or belief (facere = "to do"), is from 1630s, from the notion of "something that has actually occurred." The particular concept of the scientific, empirical fact ("a truth known by observation or authentic testimony") emerged in English 1660s
37
one of two equal groups one of two equal pieces l'un de deux groupes égaux l'un de deux morceaux égaux
one half 1/2 in a quantitiy partitioned into two equal groups, each group represents one-half of the whole quantity in a shape or object partitioned into two identical piecs, each piece represents one-half of the whole the two halves should be the same size as each other une moitié 1/2 dans une quantité divisée en deux groupes égaux, chaque groupe représente la moitié de la quantité totale dans une forme ou un objet divisé en deux morceaux identiques, chaque morceau représente la moitié de l'ensemble les deux moitiés doivent avoir la même taille l'une par rapport à l'autre ## Footnote half = Old English half, halb (Mercian), healf (W. Saxon) "side, part," not necessarily of equal division (original sense preserved in behalf), from Proto-Germanic *halba- "something divided" (source also of Old Saxon halba, Old Norse halfr, Old Frisian, Middle Dutch half, German halb, Gothic halbs "half"), a word of no certain etymology. Perhaps from PIE root *skel- (1) "to cut," or perhaps a substratum word. Noun, adjective, and adverb all were in Old English.
38
fraction
represents a part-to-whole relationship one whole can be interpreted as a number of unit fractions représente une relation de partie à tout un tout peut être interprété comme un certain nombre de fractions unitaires ## Footnote fraction = late 14c., originally in the mathematical sense, from Anglo-French fraccioun (Old French fraccion, "a breaking," 12c., Modern French fraction) and directly from Late Latin fractionem (nominative fractio) "a breaking," especially into pieces, in Medieval Latin "a fragment, portion," noun of action from past participle stem of Latin frangere "to break (something) in pieces, shatter, fracture," from Proto-Italic *frang-, from a nasalized variant of PIE root *bhreg- "to break." Meaning "a breaking or dividing" in English is from early 15c.; sense of "broken off piece, fragment," is from c. 1600.
39
unit fraction fraction d'unité
one of the equal parts that compose the whole 1/2 is one part of the two equal parts that compose the whole 1/3 is one part of the three equal parts that compose the whole one whole can be interpreted as a number of unit fractions une des parties égales qui composent le tout 1/2 est une partie des deux parties égales qui composent l'ensemble 1/3 est une partie des trois parties égales qui composent l'ensemble un tout peut être interprété comme un nombre de fractions unitaires ## Footnote unit = The meaning "single thing or person regarded as a member of a group" is attested from 1640s.
40
Which is larger assuming that the whole is the same size? 1/2 1/3 Lequel est le plus grand, en supposant que l'ensemble soit de la même taille ? 1/2 1/3
1/2 since this is 1 out of 2, which is half 1/3 is 1 out of 3, which means that we have divided the same object into three parts instead of the two and this means that each part must be smaller if the whole is the same for both fractions. Since we only have one of those parts, and not two or three of the parts, this will be relatively small compared to the one out of two parts. 1/2 puisqu'il s'agit de 1 sur 2, soit la moitié 1/3 est 1 sur 3, ce qui signifie que nous avons divisé le même objet en trois parties au lieu de deux et que chaque partie doit être plus petite si le tout est le même pour les deux fractions. Comme nous n'avons qu'une seule de ces parties, et non deux ou trois, elle sera relativement petite par rapport à l'une des deux parties.