Lab Exam 2 Study Guide Flashcards Preview

Bio 40C > Lab Exam 2 Study Guide > Flashcards

Flashcards in Lab Exam 2 Study Guide Deck (65):
1

Know the location of the kidneys with respect to the vertebrae and ribs.

Located between T10 and L3. Partially protected by 11th and 12th ribs.

2

What does the term retroperitoneal mean?

situated behind the peritoneum

3

Which kidney is lower than the other and why?

Right kidney slightly lower than left kidney because of size of right liver lobe.

4

What type of cells lines the parietal and visceral layers of the glomerular capsule?

The visceral layer forms part of the filtration membrane and is adjacent to the glomerulus, and the parietal layer forms a funnel-like structure that collects the filtrate within the capsular space (glomerular cavity) -- Both layers are simple squamous epithelium; however, the simple squamous epithelial cells of the visceral layer have foot-like projections that wrap around glomerular capillary walls (called podocytes)

5

What are the components of the filtration membrane?

Capillary walls and the visceral wall of the glomerular capsule.

6

Components of the juxtaglomerular apparatus: macula densa, juxtaglomerular cells. What do they look like? Where are they? What do they do? How?

In thick ascending loop of Henle (in juxtamedullary
nephrons) epithelia gradually becomes cuboidal
and then columnar.


Epithelial cells in thick ascending limb make
contact with afferent arterioles of renal corpuscle -
become crowded - often called macula densa.


Macula densa in contact with modified smooth
muscle fibers of the arteriole wall - called
juxtaglomerular apparatus.

7

What are the 3 processes involved in urine formation by the nephron and collecting ducts?

1. Glomerular filtration -- The first step in urine production. Water and most solutes in blood pass through the filtration membrane (glomerular capillary walls and visceral wall of glomerular capsule) into the glomerular cavity. 2. Tubular reabsorption -- Water and solutes cross the wall of the renal tubule, diffuse through the interstitial fluid, and return to blood by entering the peritubular capillaries or vasa recta. 3. Tubular secretion -- Solutes leave the peritubular capillaries or vasa recta, diffuse through the interstitial fluid, cross the wall of the renal tubule, and are eliminated in urine.

8

What is the major site of tubular reabsorption of water and solutes?

The proximal convoluted tubule

9

Which part of the loop of Henle is more permeable to water but not solutes?

The descending limb of the loop of Henle

10

Which part of the loop of Henle is impermeable to water but permeable to solutes?

The ascending limb of the loop of Henle

11

What ions are reabsorbed in the late distal convoluted tubules?

further Na+ and Cl- are reabsorbed into t.e blood/

12

What ions are secreted in the late distal convoluted tubule?

K+

13

What hormone increases the reabsorption of sodium and chloride ions and the secretion of potassium ions?

Aldosterone

14

What hormone is most important in determining the water content of urine?

ADH (antidiuretic horomone)

15

What cells are important in pH regulation? What enzyme must be present in these cells to enable secretion of protons?

intercalated cells: reabs K+ and HCO3-, sec H+

enzyme: carbonic anhydrase--catalyzes CO2 and HOH to H2CO3 to H+ and HCO3

16

Define urinalysis.

An analysis of the physical, chemical, and microscopic characteristics of urine and a measure of urine volume.

17

Define specific gravity.

Specific gravity (density) is the ratio of the weight of a substance to the weight of an equal volume of water.

18

Recognize a urinometer. What do you measure with this instrument? Know how to use a urinometer.

The device used to measure specific gravity. Take measurement at the meniscus.

19

What is the range of specific gravity of human urine?

More dilute urine has a lower specific gr.avity. Normal range is 1.001-1.035

20

Know the meaning of the following terms: glucosuria

glucose in urine

21

Know the meaning of the following terms: hematuria

erythrocytes in urine

22

Know the meaning of the following terms: pyuria

white blood cells in urine

23

Know the meaning of the following terms: ketonuria

ketone bodies in urine

24

Know the meaning of the following terms: albuminuria

Excess albumin in urine

25

Know what it may indicate if the pH of urine is very low or very high.

Normal range is 4.6-8.0, with an average of 6.0; high protein diets produce an acidic urine, vegetarian diets produce an alkaline urine. Very acidic could be a urinary tract infection.

26

Know the significance of glucose in the urine. Refer to your textbook and lab manual.

Glucosuria - usually caused by diabetes mellitus, but sometimes may be caused by stress (epinephrine stimulates glycogen breakdown); diabetes mellitus and stress result in high blood glucose levels and therefore high levels of glucose in the filtrate; glucose transporters cannot work fast enough to reabsorb all glucose from filtrate.

27

Know the significance of protein in the urine. Refer to your textbook and lab manual.

Can be a sign of Glomerulonephritis (inflammation of the kidneys that involves the glomerulus.) Glomerular damage in Diabetic Kidney Disease can cause protein to leak into the urine.

28

Know the significance of ketones in the urine. Refer to your textbook and lab manual.

Ketonuria - caused by metabolic condition called ketosis; ketosis occurs when cells do not have enough glucose to completely break down fatty acids; ketosis can occur from starvation, low carb diets, or untreated diabetes mellitus.

29

Know the significance of blood in the urine. Refer to your textbook and lab manual.

Hematuria -- may be caused by inflammation of urinary system organs, irritation by kidney stones, kidney disease, trauma to urinary system organs, or polyps or tumors within the urinary system. Could be UTI, kidney, or glomerular filtration issue.

30

Understand how the diseases listed in your activities list influence urine volume and concentration and the mechanisms by which they do this: Diabetes Mellitus

- So much glucose is filtered through the glomerus that it cannot call be filtered out (it saturates the sodium-glucose transporters, exceeding the transport maximum, a.k.a. renal threshold, for glucose) -Gluces takes water with it by osmosis, higher volume of dilute urine.

31

Understand how the diseases listed in your activities list influence urine volume and concentration and the mechanisms by which they do this: Central Diabetes Insipidus

-Not producing ADH from posterior pituitary gland - Without ADH to bind to receptors on principal cells in collecting ducts and distal convoluted tubules, so you cannot reabsorb water -Urine becomes very dilute

32

Understand how the diseases listed in your activities list influence urine volume and concentration and the mechanisms by which they do this: Nephrogenic Diabetes Insipidus

-ADH receptors in principal cells are not binding and responding to ADH. -Because principal cells are not binding ADH, we cannot reabsorb water -Urine becomes very dilute

33

Understand how the diseases listed in your activities list influence urine volume and concentration and the mechanisms by which they do this: Addison's Disease

-Autoimmune Disease -Adrenal cortex does not produce Aldosterone -Aldosterone doesn't tell receptors in principal cells in Kidney's to reabsorb Na+ => Sodium and water is released in urine, K+ retained in blood

34

Understand how the diseases listed in your activities list influence urine volume and concentration and the mechanisms by which they do this: Kidney Failure

-Failure of glomerular filtration system, acute or chronic -Blood is no longer filtered through glomerular filtration -Volume of dilute urine while failing, cessation of urine + death once failed.

35

Organs of the female urinary system. Define 1-4.

Q image thumb

1. Right kidney

2. Right ureter

3. Urinary bladder

4. Urethra

A image thumb
36

Location and Coverings of the Kidneys. Define 5-7.

Q image thumb

5. Renal Fascia

6. Renal Hilum

7. Left Kidney

A image thumb
37

Location and Coverings of the Kidneys. Define 1-4.

Q image thumb

1. Peritoneum

2. Right kidney

3. renal capsule

4. Adipose capsule

A image thumb
38

Internal Structure of the kidney. Define 1-4.

Q image thumb

1. Renal Medulla

2. Renal Cortex

3. Renal Column

4. Renal Capsule

A image thumb
39

Internal Structure of the kidney. Define 5-8.

Q image thumb

5. Renal Pyramid

6. Renal Papilla

7. Minor Calyx

8. Major Calyx

A image thumb
40

Internal Structure of the kidney. Define 9-12.

Q image thumb

9. Renal artery

10. Renal vein

11. Renal hilum

12. Renal pelvis in renal sinus

A image thumb
41

Ureters, urinary bladder, and urethra in female. Define 5-9.

Q image thumb

5. Trigone

6. Internal urethral orifice

7. Urethra

8. External urethral sphincter

9. external urethral orifice

A image thumb
42

Ureters, urinary bladder, and urethra in female. Define 1-4.

Q image thumb

1. Internal urethral sphincter

2. Ureters

3. Detrusor muscle of urinary bladder

4. Uretral openings

A image thumb
43

rinary bladder and urethra in males and females. Define 1-4.

Q image thumb

1. Rectum

2. Anus

3. Ureter

4. Urinary Bladder

A image thumb
44

rinary bladder and urethra in males and females. Define 5-8.

Q image thumb

5. Uretral opening

6. Internal urethral orifice

7. Prostatic urethra

8. Membranous urethra

A image thumb
45

rinary bladder and urethra in males and females. Define 9-11.

Q image thumb

9. Spongy Urethra

10. External Urethral Orifice

11. Urogenital Diaphragm

A image thumb
46

Comparison of the urinary bladder and urethra in males and females. Define 12-15.

Q image thumb

12. Rectum

13. Anus

14. Uterus

15. Urinary bladder

A image thumb
47

Comparison of the urinary bladder and urethra in males and females. Define 16-20.

Q image thumb

16. Internal urethral orifice

17. Urethra

18. Urogenital diaphragm

19. External urethral orifice

20. Vagina

A image thumb
48

Cortical Nephron. Define 5-7.

Q image thumb

5. Distal convoluted tubule

6. Colleting duct

7. Papillary duct

A image thumb
49

Cortical Nephron. Define 1-4.

Q image thumb

1. Glomerular capsule

2. Proximal convoluted tubule

3. Ascending limb of loop of Henle

4. Descending limb of loop of Henle

A image thumb
50

Cortical Nephron. Define 8-10.

Q image thumb

8. Glomerulus

9. Glomerular capsule

10. Renal corpuscle

A image thumb
51

Cortical Nephron. Define 11-13.

Q image thumb

11. Peritubular capillary

12. Efferent Arteriole

13. Afferent arteriole

A image thumb
52

Kidney Blood Supply. Define 5-9.

Q image thumb

5. interlobular artery

6. arcuate artery

7. interlobar artery

8. segmental artery

9. renal artery

A image thumb
53

Kidney Blood Supply. Define 10-13.

Q image thumb

10. Renal vein

11. interlobar vein

12. arcuate vein

13. interlobular vein

A image thumb
54

Kidney Blood Supply. Define 1-4.

Q image thumb

1. Afferent arteriole

2. efferent arteriole

3. vasa recta

4. peritubular capillaries

A image thumb
55

Sectional view of Kidney. Define 1-3.

Q image thumb

1. Proximal and distal convoluted tubules. (outer cortex)

2. glomerulus

3. loop of Henle and collecting ducts

 

A image thumb
56

Sectional view of Kidney. Define 4-6.

Q image thumb

4. Glomerulus

5. parietal layer of glomerular capsule

6. capsular space

 

A image thumb
57

Sectional view of Ureter. Define 1-6

Q image thumb

1. Lamina propria

2. Transitional epithelium

3. Lumen

4. Mucosa

5. Muscularis

6. Adventita

 

A image thumb
58

Structure and function of a cortical nephron. What happens in 1.

Q image thumb

1. filtration

A image thumb
59

Structure and function of a cortical nephron. What happens in 2.

Q image thumb

2. Major site of tubular reabsorption of water and solutes; secretion of solutes.

A image thumb
60

Structure and function of a cortical nephron. What happens in 3.

Q image thumb

3. water reabsorbed but not solutes

A image thumb
61

Structure and function of a cortical nephron. What happens in 4.

Q image thumb

4. Na+ and Cl- reabsorbed but not water

A image thumb
62

Structure and function of a cortical nephron. What happens in 5.

Q image thumb

5. Additional reabsorption of solutes and water

A image thumb
63

Structure and function of a cortical nephron. What happens in 6.

Q image thumb

6. Aldosterone increases reabsorption of Na+ and Cl- and secretion of K+

A image thumb
64

Structure and function of a cortical nephron. What happens in 7.

Q image thumb

7. ADH increases reabsorption of water, additional reabsorption and secretion of solutes

A image thumb
65

Give the equation for the bicarbonate buffer system:

The bicarbonate buffering system is an important buffer system in the acid-base homeostasis of living things, including humans. As a buffer, it tends to maintain a relatively constant plasma pH and counteract any force that would alter. In this system, carbon dioxide (CO2) combines with water (H2O) to form carbonic acid (H2CO3), which in turn rapidly dissociates to form hydrogen ions (H+) and bicarbonate (HCO3- ) as shown in the reactions below.


CO2 + H2O = H2CO3 = HCO3- + H+

 

The carbon dioxide - carbonic acid equilibrium is catalyzed by the enzyme carbonic anhydrase; the carbonic acid - bicarbonate equilibrium is simple proton dissociation/association and needs no catalyst.

 

Excess Hydrogen is secreted into urine, and Bicarbonate is reabsorbed into blood.