lecture 2 - matrices Flashcards

1
Q

what is a matrix?

A

table of n rows and m columns
A = a1,1 a1,2 … a1,n
a2,1 a2,2 .. a2,n
… … … …
am,1 am,2 .. am,n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

How is a matrice denoted?

A

R ( real number) (m,n) with m being number of columns, and n being number of rows.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

What is a square matrix?

A

If R(n,n)
As in if m = n ( no. of columns and rows is the same)
Otherwise is a rectangular matrix

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

What does a(i) and a^j mean?

A

a(i) = ith row vector
a^j = jth column vector

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What is transpose?

A

denoted as A^T
elements in a matrix shifted by 90 degrees on square matrices
1 2
3 5
»>
1 3
2 5

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

What is symmetry?

A

if element a(i,j) = a(j,i)
- imagine a symmetrical line though the diagonal.
- follws that A^T = A

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

What is diagonal?

A

elements where row index = column index formatted into an ordered tuple.
e.g.
1 2 3
3 5 1
2 4 5
diagonal = (1,5,5)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

What is a trace?

A

symbol as tr(A)
sum of diagonal elements
e.g.
1 2 3
3 5 1 = A
2 4 5
tr(A) = 1 + 5 + 5 = 11

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

What is the null matrix?

A

denoted O
- all elements in a matrix is 0
e.g.
0 0 0
0 0 0
0 0 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

What is the identity matrix?

A

Denoted I
square matrix whose diagonal elements are 1s, with rest 0
e.g.
1 0 0
0 1 0
0 0 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

what is sum of matrices?

A

for element c(i,j) = a(i,j) + b(i,j)
e.g.
2 0 3 0 5 0
4 8 + 4 9 = 8 17

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

what is the scalar multiplication to a matrice?

A

element c(i,j) = lambda * a(i,j)
e.g.
2 0 4 0
3 8 * 2 = 8 16

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

what is a matrix product?

A

product of matrix A and B where C = AB
Take the row vector of A and multiply by the column vector of B.
> matrices must have at least the same amount of column in B as rows in A
=
(a(1) * b(1) a(1)
b(2))
(a(2)b(1) a(2)b(2))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

example of matrix product?

A

A =
2 7 3 1
5 0 4 1
B =
1 2
2 5
8 0
2 2
For first element a(1)b(1) is:
(2 * 1) + (7
2) + (38) + (12) = 42

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

what is transpose product?

A

Rule that
(AB)^T =B^T * A^T

How well did you know this?
1
Not at all
2
3
4
5
Perfectly