QM Flashcards
(80 cards)
R^2
Mide la varianza explicada por el modelo
AIC
Pediction o forecasting (particular models)
BIC
Goodness of fit (Parsimonious - General model)
Significancia
|statistic|> Critical Value
p-value<alpha
Reject de null
Conditional Heteroskedastic
Inflated statistics (Error Type 1), SE underestimated, biased coefficients, underestimated p-values
Serrial Correlation
Inflated statistics (Error Type 1), SE underestimated, negative sc implica inconsistent coefficients
Multicolinearity
Inflated SE, se corrige ampliando la muestra, excluyendo más variables y/o usando proxys
Logistic Regression
Outcome discreto
Dick fuller Test
Unit root, donde H0: g=0 y Ha: g<0, g=b1-1, fail to rejcect implica Unit root (RW)
Seasonality
Significancia en un periodo o autocorrelation positiva en residuals
PCA
Dimension Reduction of highly correlated features (continous unsupervised)
Regression
Prediction (continous supervised)
Regression or classification complex non-linear data
CART, RF, NN
Regression no complex non-linear data
Penalized Regression
Classification Labeled Data
Discreto supervised
Classification no complex non-linear data
KNN, SVM
Classification no Labeled Data
Clustering Continous Unsupervised
Clustering no complex non-linear data (#categories)
K-means
Clustering no complex non-linear data ( No #categories)
Hierichal Clustering
Clustering complex non-linear data
NN
Overfitting
Variance error
Underfitting
Bias Error
SVM
Outlier detection, target variable binary, no defined hyperparameter
KNN
Clasifica nuevas observaciones encontrando similitudes en las existentes (k puntos más cercanos - #clusters), sensitive to local outliers