Quant Flashcards

(184 cards)

1
Q

Special triangle 1

A

3, 4, 5 or 6, 8, 10 or 1.5, 2, 2.5 or any multiple of that

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Special triangle 2

A

5, 12, 13 or 10, 24, 26

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Isosceles triangle

A

x, x, xrt2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

30, 60 90 degree

A

x, xrt3, 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Other odd spec triangles`

A

8, 15, 17 or 7, 24, 25 or 9, 40, 41

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Similar triangles, given 2 parallel sides

A

If share angle, then they are similar

*corresponding angles and prop sides; area is sq of proportion of sides

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Similar triangles, given 2 parallel lines with vertical angle

A

Vertical angles are the same, corresponding angles are the same
*corresponding angles and prop sides; area is sq of proportion of sides

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Similar triangles, both have right angles

A

If share angle, then the last angle must have same measurement
*corresponding angles and prop sides; area is sq of proportion of sides

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Consec int: avg # odd consec int

A

always integer

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Consec int: avg even # consec int

A

not an integer

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

If # of int is odd, sum is

A

divisible by n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

If # of int is even, sum is

A

not divisible by n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Product of K consec int is divisible by

Product of K evenly spaced int is divisible by

A

K!
(because if you divide the evenly spaced by K!, you’ll get the set of consec int - figure out # of terms in set and if # is a multiple of K!)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

3 consec int

A

if middle is odd, then 2 evens on the side (one divis by 2, other divis by 4), always divis by 3

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

2 consec int

A

must be even int, so product ALWAYS even

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

E +/- E

A

E

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

O +/- O

A

E

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

E */ E

A

E

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

O */ O

A

O

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Sum of 2 primes = E or O?

A

E, unless one’s a 2 and thus it’ll be O

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

OEOEO (5)

A

O bc 1 pair of O makes E and single O make O

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

EOEOEO (6)

A

O bc 1 pair of O makes E and single O makes O

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

If unit digit is 0, 1, 4, 5, 6, 9

A

it’s a perfect square

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

if unit digit is 1, 5, 6**

A

Any power of that number has same unit digit

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Sum of DISTINCT prime is odd
then it's a perfect square (49--> 7 which is odd)
26
Perfect square (# total factors?)
Odd # of total factors (1, number, number)
27
10!+7 is a multiple of
7 because 7 is in both 10! and 7
28
Evenly spaced set, mean
= median (doesn't matter if it's odd number or even number of set) = (1st + last) / 2
29
a^x*b^x
(ab)^x
30
x^2=-9
no real solutions!
31
x^2-x
0
32
1/x > 1/y
when +x< +y
33
1/x > 1/y
when x
34
Area of equilateral triangle
rt3/4 *s^2
35
Area of rhombus
D1D2 / 2 (D is diagonal) or bh | *Must know D, can't assume rhombus has 90 deg
36
Diagonal of a square
x rt2
37
Diagonal of a cube
x rt 3
38
Square maximizes ?? (V or perimeter)
Volume
39
Rectangle maximizes ?? (V or perimeter)
Perimeter
40
Total average speed
2 S1 S2 / (S1 + S2) | *distance must be the same or same time with diff speeds
41
1/A + 1/B = 1/T
To complete 1 task, 1/T to finish task in 1 hour
42
Plug in: if square roots
Plug in 1 or -1
43
Represent 10s digit
10x+y
44
If there's no shared primes, then GCF is ? LCM is ?
GCF = 1, LCM= product
45
1 even integer in a set, product is divis by? | 2 even integers in set, product is divis by?
2 4
46
Never forget __ as a factor
1
47
If asks for ratio and doesn't specific integer,
it could be anything
48
5! (what's a multiple)
10
49
2^4
16 (think 4^2)
50
2^5
32
51
2^6
64 (think 4^3)
52
2^7
128
53
2^8
256 (think 4^4)
54
2^9
512
55
2^10
1024 (good to know as proxy to 1000)
56
3^3
27
57
3^4
81
58
3^5
243
59
5^3
125
60
5^4
625 (think 25*25)
61
1/6 ~
16.7%
62
1/7 ~ 2/7 3/7
14% 28% 42%
63
1/9 ~ 2/9 3/9
11% 22% 33%
64
3!
6
65
4!
24
66
5!
120
67
6!
720
68
7!
5040
69
What's LCM for 6 and 4
Write out primes: 2, 3 and 2, 2 so together it's 2, 3, 2 that will work for both
70
What's GCF for 6 and 4
2
71
Only ___ inequalities
ADD! no -, *, /
72
Sum of consecutive integers cubed
Is always a perfect square (hint if ask for sum, make chart with numbers and sum so 1+8+27 so sum is 1, 9, 36
73
Square root of cumulative sum (of consecutive integers cubed)
Is always the sum of consecutive integers | 1,9,27 so 1,1+2+3 etc
74
D, E more likely in | C more likely in
middle | end
75
interior angles sum
(n-2)*180
76
Diagonal of a rectangular solid
SQ RT OF (x^2+y^2+z^2)
77
sphere volume
(4/3) pi r^2
78
Sphere area
4 pi r^2
79
Surface area of cylinder
2 pi r^2 (wrap around) + 2 pi rh (2 circles on top and bottom)
80
x=-b+/- sq rt (b^2-4ac) / 2a if b^2-4ac is >0 if b^2-4ac is =0 if b^2-4ac is <0
2 x-int 1 x-int 0 x-int
81
Parabola f(x)= ax^2+bx+c If a is large If a is small
graph is narrow | graph is wide
82
1/11
.09999
83
2/11
.18
84
basically something /11 is
multiple of .09
85
18^2
324
86
19^2
361
87
17^2
289
88
16^2
256
89
3^9)^(3^9)
3^(9*3^9) bc multiply exponents but can multiple 9*3*9 | 3^(3^2*3^9)=3^ (3^11), don't just say 3^(9*3)^9 bc you're exponentially counting
90
of 2's or 3's in set
Start w bigger factor and write out numbers - then can simplify so write 3^3, 3*2*5 etc 2 is evens but also need to check division by 4, 8 etc bc there's so many 2s
91
If stuck
Plug in numbers!!
92
Manipulate numbers so if ask for 47*49 try
(48-1)(48+1)
93
If multiply by consec integ, product always
Product always a factor of ea consec integ
94
Manipulation of exponents often clue -
Need to factor out if its 1 difference so 9^a = 10*9 - 9^2 bc you factor out 9 and get (10-1)
95
Gcf Lcm
Product of Every factor in middle - even if There are repeats Product of all factors (don't double count ones already in middle); can also calc by taking the product of the numbers / GCF
96
Sum of consec int
Median *n and you can test if median is int when n is odd, median isn't int when n is even first term: A, last term: A+(n-1)d; so sum is [A+A+(n-1)/d]*n/2 ----> so n/2*[2A+(n-1)d] N(n+1)/2 only when starts with 1 If you're given 2+4+6, factor into 2(1+2+3) Patterns # of pairs*avg where avg=(1st +last) / 2 and n is ((last-first)+1)/2
97
Divis by 4
Last 2 digits divis by 4
98
Divis by 6
If even and divis by 3
99
(X-1)(x-4) which #s are positive
Negative - btwn 1 and 4 | Pos - all else
100
Perpendicular slopes
Negate reciprocal | 3, -1/3
101
Sum of consec integers - how to get a variation without trying crazy numbers
If you're set is 1 2 345 then try -1,0,1,2,3,4,5,6 Helps prove insuff if number in set is important
102
If you want to find min, | Ex: x _ 55 _ 2x+20
max the rest to get min x | x 55, 55, 2x+20, 2x+20
103
Probability - desire outcome for AB
AB and BA possibilities so rmbr to multiply by 2 1. calc probability of AB 2. calc total sequences (AB, BA so 2) 3. multiple 2* probability of AB
104
Probability - select 2G and 2B out of 3B and 3G
Can use perm/comb: Numerator use 3C2 * 3C2 because want G AND B, and think like a team Denom use total ways so 6 total C 4, also think like team bc don't matter AB or BA
105
Probability if want to choose 2 girls out of 5, 10 ppl total
5/10*4/9 or think of it like perm bc not "team" so 5!/3! so 5*4 in numerator
106
Probability tips
1. identify max / min to check and elim answer 2. committees / teams - think combination bc don't want to dbl count 3. arrange books / ppl in line - think permutation bc order matters need to count all 4. # of ways / total <- perm/comb may help find
107
Group grid
Use Venn if there's no outside area (not A or B or AB) Use group grid if there's 4 possib Identify max / min to eliminate / check answer
108
Triangle
length of largest side is < sum of 2 sides
109
3 circles in venn diagram
1. sum all 3 =total and create a bunch of equations with each circle then add /subtract equations 2. a+b+c-(all groups of 2) - 2*(group of 3)+ group of none * ** don't forget *2 - make sure the groups of 2 are also "clean numbers" and you don't double count with group of 3
110
Rhombus vs square
Rhombus: 4 equal sides, opposite sides and angles parallel, diagonals bisect; DOESN'T HAVE TO HAVE 90 DEG - is a parallelogram, not a square Square: 4 equal sides, opp sides parallel, all 90 deg angles, diagonals bisect - is a parallelogram and rhombus
111
Trick: Estimate
Replace decimal / roots w fractions and vice versa or estimate - if frxn, can elim by looking at >1 or <1 - if geom, set limits to how big / small something can be - if overestimate, answer is less
112
Trick: pick values
pick 0 or 1 | if see "except ?s" find how other answers are the opposite
113
Trick: plugging
don't plug if it doesn't fit in obv place, elim choices first
114
2 eq, 2 var
if you see 3 var need 3 eq (even if 2 of the eq only has 2 variables bc you can solve for the 2 var first and get last)
115
Ineq th
A>b and b>c then a>c
116
x^a + x^b
BEWARE it's not x^(a+b)
117
x^a* y^b
BEWARE it's not x*y^(a+b)
118
3^a*2^a
(3*2)^a
119
Wtd avg
Find distance between end points and average, use that proportion and flip it to get the proportion of the weights for each end bucket
120
prime v factor
``` factor = 1,2,3 --> don't forget 1 as a factor prime = only 2, 3 ```
121
1/8
.125
122
3/8
.375
123
5/8
.625
124
7/8
.875
125
D=RT
Work together, Opposite direction - add rates Same direction - subtract rates Work separately - add distance and time, not rates Tip: find the gap
126
Random pick
Ineq - guess C or E Middle choose ? End choose C
127
Median and mean if they equal, formula is
(A+b+c+d)/4 =(b+c)/2 Once you solve you get a+d=b+c So much easier to prove than w numbers
128
When you think about remainders,
``` the divisor (bottom number) must be at least 1+remainder in order to get that remainder - remainder can never be > divisor ```
129
See set of numbers
Think even odd, 2x+1
130
Rt 3 estimate
1.7
131
3^k+3^k
2*3^k not 3^2k
132
A^6-b^6 can also be thought of as
|a|=|b| so once you know one is pos/ neg, can tell you a lot
133
Divis by 6
Needs to be even and a factor of 3 ( bc divis by 2 and 3)
134
If a number has a factor
Always divis by factor! No need to waste time thinking of others
135
When triangles are similar, all sides have the same
Ratio! So easy to solve if you know one ratio
136
Tangent on circle
2 tangents lines form an angle, minor arc = central angle, outside angle is 180-x bc below That angle is supplementary to the angle formed inside the circle (kite like shape) 2 chords inside circle form angle x and minor arc=2x
137
When comparing inequalities for fractions
Must make sure the base is 10 not 1/10 bc that changed the direction of inequality
138
Increase by 1/3
Means multiply existing by 1/3
139
10x the previous number
Think 10^n because its likely to be 10*10*...
140
When you pull out 5^(k-1)-5^k
Can do 5^k(5^-1 -1) so its 1/5-1 inside
141
Rt3
1.7
142
Rt 5
2.25
143
Smaller? -2.3 or -3
-3, think to the left in number line
144
Has less than twice as many x as y
X<2y
145
4^y+4^y
2*4^y WRONG 4^2y (exponents make it too big, there's just 2 that you're adding, only if it's a multiplication)
146
x^2 - x<0
0<1
147
absolute value equations, to check, you MUST
plug soln back into ORIGINAL eq
148
reciprocal of inequalities: | if you know the sign of variables, can you flip the inequality x
the reciprocal is 1/x ___ 1/y if both positive or negative flip if opposite signs, don't flip
149
squaring inequalities: | do you flip the sign of inequality
if both are positive - don't flip if both are negative, flip when you square if opp signs, or unclear - CAN'T FLIP, don't know
150
direct vs inverse
easier to just combine equations so Direct: y1/x1 = y2/x2 Indirect: y1*x1=y2*x2
151
Calc # of terms
Last number - make sure it's one that is included First number - is not included in set last - first + 1 = # of terms
152
sum between 2 numbers
avg (of the 1st and last) * # of terms (be careful how you calc # of terms - pay attn to even/odd, incl last but not first)
153
max / min of parabola
o Y=a(x-h)^2+k then max is (h,k) | o Or, solve for –b/2a to get x, then plug in x to get y
154
4/x < -1/3
if x is neg | 12>-x (switch sign, but don't add a negative)
155
|z| <1
-1re faster
156
when you see a number ^2 is < itself | x^2
then x must be pos fraction | 0<1
157
max / min length for triangle / polygon
triangle: a-b < ? < a+b polygon: max is ? < sum of all known sides min is largest given side - sum of rest (but no min if largest given side is not bigger than the sum of rest)
158
12*18
216
159
18*30
540
160
if A>B, then if A increases by x% and y decreases by x% is net increase/ decr?
increase bc A>B initially
161
Repeating decimals
if denominator is 9, 99, 999 look at numerator for repeating digits Ex: 23/99=.2323 Ex: 1/9=.11111
162
Tens digit
use 10x+y - helps you figure out factoring or other tricks
163
Ratios if you have 10% and final amount is 70%
don't find 100% then 70%, go straight to 70% | x/y=.1/.7
164
Number of terms in a set (evenly spaced)
(last-first)/increment + 1 | ** add 1 after you divide out increment
165
4b=5a, b must be a mult of ___ and a must be a mult of ____
b must be a multf 5 and a must be a mult of 4
166
rt6
2.5
167
rt 2.5
1.6
168
of distinct factors
count every number even repeats | Ex: 49= 1, 7, 7 so 3 total
169
Angle in circle - central angle is ___ when it's corresponding arc is x what's inscribed angle
x (where angle touches center) if inscribed angle (angle doesn't touch center but rather is on the circle), then x/2
170
rt 6= rt 5= rt 2.5= rt 1.6 =
2. 5 2. 25 1. 6 1. 2 (just gets closer to 1) Benchmark: rt1 =1 rt2= 1.4
171
alternate strategies
1. plug in answers - back solve 2. smart numbers 3. estimate / benchmark
172
2 similar triangles, ratio is a:b what's Area ratio
a^2: b^2 for triangles If it's a circle, and radius is a:b then Area is a^2:b^2 too Area - 1:4 then radius is 1:2
173
13n / m which cannot be a divisor of 35x and 20y
m must be 13 or 13 * a part of n or just n -- think how can I cancel out denominator using factors in numerator same concept, you should try dividing 35x / choice 20x and 20y / choice 20x. 35x/20y=7/4
174
Add / subtract multiples of 3 Add / subtract non multiples of 3 Add / subtract multiple and non multiple
will still be divis by 3 may be divis by 3 (19+13=22 NO; 19+14=33 YES) will NOT be divis by 3
175
If x/N and y/N are integers
x+/-y is also divis by N
176
If m contains 2, 3 as factors n contains 2,5 as factors m*n contains ----
2*2*3*5 as factors
177
of factors for complex numbers like 9450
2 * 3 * 5^2 * 7 1. add 1 to ea exponent: 1+1, 1+1, 2+1, 1+1 2. Multiple together: 48 factors
178
Perf squares have ___ # of total / distinct factors Perf squares can be expressed as ____ number of prime factors The p could have ___ number of factors Sum of perf square factors is ___
odd even odd or even odd
179
Divisors means
factors
180
Prime factors vs factors
Prime factors/ factorization: break out 12= 2^2*3 Factors: 1, 2, 3, 4, 6, 12 (think pairs)
181
DRT- if you travel twice as fast and the difference in time is 15 min, then what's original time? D is same
Think ratios: R: 1:2 T: 2:1 so T is 30:15 --> diff is 15 - 2T (where this is the orig since it takes longer)+T=15 so 2T=30 Or solve D/2x=T-15 and D/x=T get T=30
182
When you see question that asks what the percent change or percent incr/decr
Make sure you find the actually change so new -old / old not just the difference!!
183
Percent question, be careful
Make sure you write exactly what question asks, if its "of all bulbs turned on what's the percent..." Make sure you circle xx/ bulbs turned on. Don't solve for xx/all bulbs
184
Percent terms | - when to use 100-x%
reduce by x% | % fewer than x