Chapter 18: Confidence Intervals for Proportions Flashcards
(12 cards)
Point Estimator
A statistic that provides an estimate of a population parameter
Point Estimate
The value of the point estimator from a sample
C% Confidence Interval
An interval of plausible values for a parameter
CI = point estimate ± margin of error
Interval (A,B):
Point estimate = (A+B)/2
Margin of error = (B-A)/2
Margin Of Error
How far we expect the sample statistic to vary from its corresponding population parameter, at most, in about ___% of samples
Confidence Interval Script
“We are [C%] confident that the interval from [A to B] captures the true [population parameter in context].”
Confidence Level Script
“If we take many, many sample and calculate a confidence interval for each, about [C%] will capture the true [population parameter in context].”
1-PropZInt Conditions
- Random sample
- n≤10% of pop.
- np≥10 & n(1-p)≥10
Margin Of Error Formula
(critical value)*(standard error of statistic)
Standard Error
Estimate of standard deviation
Critical Value Of Z Distribution Formula
z* = InvNorm ([1-c]/2, μ=0, σ=1)
Confidence Interval Of 1-PropZInt On Calculator
x: # of successes
n: sample size
C-Level: CI% as decimal
Sample Size & Confidence Level Relating To Margin Of Error
Increase in sample size = decrease in margin of error (narrower interval)
Increase in confidence level = increase in margin of error (wider interval)