Intermediate I Geometry and Measurement, (3-4 new curriculum), Intermédiaire I Géométrie et mesures, (3-4 nouveau programme) Flashcards

1
Q

Two planes, lines, rays, or segments that are equidistant from each other when measured at a 90 degree angle out from one of them to the other

Deux plans, lignes, rayons ou segments qui sont équidistants l’un de l’autre lorsqu’ils sont mesurés à un angle de 90 degrés de l’un à l’autre.

A

parallel

parallèle

parallel = 1540s, in geometry, of lines, “lying in the same plane but never meeting in either direction;” of planes, “never meeting, however far extended;” from French parallèle (16c.) and directly from Latin parallelus, from Greek parallēlos “parallel,” from para allēlois “beside one another,” from para- “beside” (see para- (1)) + allēlois “each other,” from allos “other” (from PIE root *al- “beyond”). Figurative sense of “having the same direction, tendency, or course” is from c. 1600.

As a noun from 1550s, “a line parallel to another line.”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Two lines, rays, planes, or segments that intersect at a 90 degree angle

Deux lignes, rayons, plans ou segments qui se coupent à un angle de 90 degrés.

A

perpendicular

the corner of a piece of paper, the angle between the hands on an analog clock at 3:00, a capital letter L

perpendiculaire

le coin d’une feuille de papier, l’angle entre les aiguilles d’une horloge analogique à 3 heures, une lettre majuscule L

thouroughly + hang

thouroughly + hang

perpendicular = late 15c., perpendiculer, of a line, “lying at right angles to the horizon” (in astronomy, navigation, etc.), from an earlier adverb (late 14c.), “at right angles to the horizon,” from Old French perpendiculer, from Late Latin perpendicularis “vertical, as a plumb line,” from Latin perpendiculum “plumb line,” from perpendere “balance carefully,” from per “thoroughly” (see per) + pendere “to hang, cause to hang; weigh” (from PIE root *(s)pen- “to draw, stretch, spin”).

per + pendere

thouroughly + hang = balance carefully

perpendicularis = vertical

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Have sides of equal length and interior angles of equal measure.

Avoir des côtés de même longueur et des angles intérieurs de même mesure.

A

regular polygons

(Will be convex by definition)

polygones réguliers

(seront convexes par définition)

polygon = in geometry, “a plane figure with numerous angles,” 1570s, from Late Latin polygonum, from Greek polygōnon, noun use of neuter of adjective polygōnos “many-angled,” from polys “many” (from PIE root *pele- (1) “to fill”) + -gōnos “angled,” from gōnia “angle, corner” (from PIE root *genu- (1) “knee; angle”).

regular = from Latin regula “rule, straight piece of wood” (from PIE root *reg- “move in a straight line”); Old English borrowed Latin regula and nativized it as regol “rule, regulation, canon, law, standard, pattern;” hence regolsticca “ruler” (instrument); regollic (adj.) “canonical, regular.”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

A plane, two-dimensional closed shape bounded with straight lines. Can be both concave, or convex.

Forme plane, bidimensionnelle et fermée, délimitée par des lignes droites. Elle peut être concave ou convexe.

A

polygon

can be irregular or regular

concave polygon = at least one interior angle is greater than 180 degrees

convex polygon = all interior angles are smaller than 180 degrees

e.g.: triangles, quadrilaterals, pentagons, hexagons, octagons etc.

polygone

peut être irrégulier ou régulier

polygone concave = au moins un angle intérieur est supérieur à 180 degrés

polygone convexe = tous les angles intérieurs sont inférieurs à 180 degrés

ex : triangles, quadrilatères, pentagones, hexagones, octogones, etc.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

list types of quadrilaterals

énumérer les types de quadrilatères

A
  • squares
  • rectangles
  • parallelograms
  • trapezoids (a quadrilateral with only one pair of parallel sides.)
  • rhombuses (a parallelogram with opposite equal acute angles, opposite equal obtuse angles, and four equal sides.)
  • Kites: A quadrilateral with two adjacent sides with equal lengths.

Les types de quadrilatères :
- carrés
- rectangles
- parallélogrammes
- trapézoïdes
- losanges (parallélogramme ayant des angles aigus opposés et égaux, des angles obtus opposés et égaux et quatre côtés égaux).
- Cerfs-volants : Un quadrilatère dont les deux côtés adjacents sont de même longueur.

trapezoid = trapezium or type of trapezium, 1706, from Modern Latin trapezoides, from Late Greek trapezoeides, noun use by Euclid of Greek trapezoeides “trapezium-shaped,” from trapeza, literally “table” (see trapezium), + -oeides “shaped” (see -oid).

rhombus = slightly earlier and more classical form of rhomb (q.v.), 1560s, from Late Latin rhombus, in the geometric sense.

rhomb = geometric figure, “oblique-angled equilateral parallelogram,” 1570s, from French rhombe, from Latin rhombus “a magician’s circle,” also a kind of fish, which in Late Latin took on also the geometric sense. This is from Greek rhombos “circular movement, spinning motion; spinning-top; magic wheel used by sorcerers; tambourine;” also “a geometrical rhomb,” also the name of a flatfish.

Watkins has this from rhembesthai “to spin, whirl,” from PIE *wrembh-, from *werbh- “to turn, twist, bend” (source also of Old English weorpan “to throw away”), from root *wer- (2) “to turn, bend” (see versus). But Beekes connects rhombos to rhembomai “to go about, wander, roam about, act random,” despite this being attested “much later,” a word of no clear etymology.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

list types of triangles

énumérer les types de triangles

A

equilateral
isosceles
scalene

By angle:
right
obtuse
acute

équilatéral
isocèle
scalène

Par angle :
droit
obtus
aigu

equilateral = “having all sides equal,” 1560s, from Late Latin aequilateralis, from aequi- (see equal (adj.)) + lateralis (see lateral).

isosceles = “having two equal sides,” 1550s, from Late Latin isosceles, from Greek isoskeles “with equal legs; isosceles; that can be divided into two equal parts,” from isos “equal, identical” (see iso-) + skelos “leg,” from PIE *skel-es-, from root *skel- “bend, curve”

scalene = “having unequal sides,” in mathematics, 1680s, from Late Latin scalenus, from Greek skalēnos “craggy, rough; uneven, unequal,” of numbers, “odd,” of cones, “slant;” as a noun, “triangle with unequal sides” (trigōnon skalēnon). This is from skallein “to dig, stir up, hoe” (compare its derivative, skalops “a mole”), from a PIE root *skel- (1) “to split, tear, cut.”

obtuse = early 15c., “dull, blunted, not sharp,” from Latin obtusus “blunted, dull,” also used figuratively, past participle of obtundere “to beat against, make dull,” from ob “in front of; against” (see ob-) + tundere “to beat,” from PIE *(s)tud-e- “to beat, strike, push, thrust,” from root *(s)teu- “to push, stick, knock, beat” (source also of Latin tudes “hammer,” Sanskrit tudati “he thrusts”). Sense of “stupid, not acutely sensitive or perceptive” is by c. 1500. In geometry, in reference to a plane angle greater than a right angle,” 1560s.

acute = late 14c., originally of fevers and diseases, “coming quickly to a crisis” (opposed to chronic), from Latin acutus “sharp, pointed,” figuratively “shrill, penetrating; intelligent, cunning,” past participle of acuere “to sharpen” (literal and figurative), from PIE root *ak- “be sharp, rise (out) to a point, pierce.”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

two angles that compose 90 degrees (compose means “add to”)

deux angles dont la somme égale 90 degrés (qui composent 90 degrés –> composer signifie “ajouter à”)

A

complementary angles

angles complémentaires

complementary = from complement (n.) + -ary. Sense of “forming a complement, mutually completing each other’s deficiencies,” is attested by 1794, in reference to the calendar of the French Revolution; in reference to colors which in combination produce white light, by 1814. Earlier in the sense “completing, forming a complement” was complemental (c. 1600).

complement = from Latin complementum “that which fills up or completes,” from complere “fill up,” from com-, here probably as an intensive prefix (see com-), + plere “to fill” (from PIE root *pele- (1) “to fill”).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

two angles that compose 180 degrees

deux angles qui composent 180 degrés

A

supplementary angles

angles supplémentaires

supplementary = 1660s, “supplemental, added as something extra,” from supplement (n.) + -ary. Suppletory in the sense of “supplying deficiencies” is from 1620s,

supplement = late 14c., “that which is added” to supply a deficiency, from Latin supplementum “that which fills up, that with which anything is made full or whole, something added to supply a deficiency,” from supplere “to fill up”; “fill up or supply by additions, add something to,” 1829,

supply = from Latin supplere “fill up, make full, complete,” from assimilated form of sub “up from below” (see sub-) + plere “to fill” (from PIE root *pele- (1) “to fill”).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

basic unit of length in the metric system

unité de longueur de base du système métrique

A

metre (m)

mètre (m)

metre is the British English spelling (Metre is the standard spelling of the metric unit for length in nearly all English-speaking nations, the exceptions being the United States and the Philippines which use meter)

Old English meter “meter, versification,” from Latin mētrum, from Greek metron “meter, a verse; that by which anything is measured; measure, length, size, limit, proportion” (from PIE root *me- (2) “to measure”).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

prefix meaning one thousand

préfixe signifiant mille

A

milli (m)

milli (m)

word-forming element meaning “thousand; thousandth part (of a metric unit),” from combining form of Latin mille “thousand”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

prefix meaning one hundred

préfixe signifiant cent

A

centi (c)

centi (c)

word-forming element meaning “one hundred” or “one hundredth part,” used in English from c. 1800, from the French metric system, from Latin centi-, combining form of centum “one hundred”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

prefix meaning ten

préfixe signifiant dix

A

deci (d)

déci (d)

in the metric system, word-forming element denoting one-tenth of the standard unit of measure, 1801, from French deci-, taken arbitrarily from Latin decimus “tenth,” from decem “ten” (from PIE root *dekm- “ten”).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

How many millimetres are in one metre?

Combien de millimètres y a-t-il dans un mètre ?

A

1000

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

How many centimetres are in one metre?

Combien de centimètres y a-t-il dans un mètre ?

A

100

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

How many decimetres are in one metre?

Combien de décimètres y a-t-il dans un mètre ?

A

10

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

What is m? (metric unit)

Qu’est-ce que m ? (unité métrique)

A

metre

mètre

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

What is dm?

Qu’est-ce que le dm ?

A

decimetre

décimètre

18
Q

What is cm?

Qu’est-ce que le cm ?

A

centimetre

centimètre

19
Q

What is mm?

Qu’est-ce que le mm ?

A

millimetre

millimètre

20
Q

What are units of length in the imperial system?

Quelles sont les unités de longueur dans le système impérial ?

A

inch (inches) in.
foot (feet) ft
yard (yards) yd
mile (miles) mi

pouce (pouces) po
pied (pieds) pi
verge (verges) vg ou yard (yards) yd
mille (milles) mi

L’emploi des unités de mesure impériales et de leurs divisions (pied, pieds : pi ou ‘; pouce, pouces : po ou ″, ¼ po; livre, livres : lb, ½ lb; once : oz, etc.) se fait maintenant beaucoup plus rare dans les domaines techniques et est déconseillé par le Bureau de normalisation du Québec.

La verge anglaise (yard en anglais), appelée simplement verge, est une unité de longueur du système d’unités de quelques pays, dont le Royaume-Uni (système d’unités impériales), les États-Unis et résiduellement le Canada, qui équivaut à 0,914 4 mètre. Son symbole international est « yd ». Son symbole au Canada francophone est « vg »

En français, le mille terrestre américain et le mille international peuvent s’écrire aussi mile (pluriel miles), mais pas le mille romain ou le mille marin.

21
Q

How many inches are in one foot?

Combien y a-t-il de pouces dans un pied ?

22
Q

How many feet are in one yard?

Combien de pieds y a-t-il dans une verge ?

23
Q

An inch is about how many centimetres?

Un pouce correspond à environ combien de centimètres ?

A

About 2.54 cm = 1 inch

Some people round this to 2.5 or just say there is about two and a half centimetres in an inch.

Environ 2,54 cm = 1 pouce

Certains arrondissent ce chiffre à 2,5 ou disent simplement qu’il y a environ deux centimètres et demi dans un pouce.

24
Q

What is the closest imperial unit of measurement in length to a metre? Which is larger?

Quelle est l’unité de mesure impériale de longueur la plus proche du mètre ? Laquelle est la plus grande ?

A

yard

The metre is larger than the yard, so swimming in a 25 yard pool is shorter than a 25 m pool and you might think you are swimming more quickly in the 25 yard pool.

la verge

Le mètre est plus grand que la verge. Nager dans une piscine de 25 verges est donc plus court que dans une piscine de 25 mètres et vous pourriez penser que vous nagez plus vite dans la piscine de 25 verges.

25
What is the closest imperial measurement of length to 30 cm? Quelle est la mesure impériale la plus proche de 30 cm ?
1 foot About 30.5 cm fit in a foot 1 pied Un pied contient environ 30,5 cm
26
formula for the area of a rectangle Formule de calcul de l'aire d'un rectangle
The area of a rectangle is a product of its perpendicular side lengths: A = lw Area equals length times width Extra notes: Can be perceived as the square-shaped units structured in a two-dimensional array. Arrays are great for picturing multiplication facts. La surface d'un rectangle est le produit des longueurs de ses côtés perpendiculaires : A = hb La surface est égale à la longueur multipliée par la largeur Notes supplémentaires : Les rectangles peuvent être perçus comme des unités de forme carrée structurées dans un tableau à deux dimensions. Les tableaux sont parfaits pour illustrer les faits de multiplication. ## Footnote area = 1530s, "vacant piece of ground," from Latin area "level ground, open space," used of building sites, playgrounds, threshing floors, etc.; which is of uncertain origin. Perhaps an irregular derivation from arere "to become dry" (see arid), on notion of "bare space cleared by burning." The generic sense of "any particular amount of surface (whether open or not) contained within any set of limits" is from 1560s.
27
perimeter of a polygon périmètre d'un polygone
the sum of the lengths of the sides P = s1 + s2+ s3 .... + sn Where n is the amount of sides on the polygon. la somme des longueurs des côtés P = s1 + s2+ s3 .... + sn Où n est le nombre de côtés du polygone. ## Footnote perimeter = early 15c., perimetre, "circumference, outer boundary, or border of a figure or surface," from Latin perimetros, from Greek perimetron "circumference," from peri "around, about" (see peri-) + metron "measure" (from PIE root *me- (2) "to measure"). Military sense of "boundary of a defended position" is attested by 1943. Related: Perimetric; perimetrical.
28
benchmark repère
a known length to which another length can be compared You can estimate length using a personal or familiar referent une longueur connue à laquelle une autre longueur peut être comparée Vous pouvez estimer la longueur à l'aide d'un référent personnel ou familier
29
Defines the space in corners, bends, turns or rotations, intersections, slopes Can sometimes be the motion of a length rotated about a vertex Définit l'espace dans les coins, les courbes, les virages ou les rotations, les intersections, les pentes. Il peut parfois s'agir du mouvement d'une longueur tournée autour d'un sommet.
Angle Un angle
30
The end point of a line segment or ray Point final d'un segment de ligne ou d'un rayon
vertex Un sommet ## Footnote vertex = 1560s, in geometry, "the point opposite the base of a figure," from Latin vertex (plural vertices) "highest point," literally "the turning point," originally "whirling column, whirlpool," from vertere "to turn" (from PIE root *wer- (2) "to turn, bend").
31
How many degrees are in a circle? Combien de degrés y a-t-il dans un cercle ? ## Footnote degree = c. 1200, "a step, a stair," also "a position in a hierarchy," and "a stage of progress, a single movement toward an end," from Old French degré (12c.) "a step (of a stair), pace, degree (of relationship), academic degree; rank, status, position," which is said to be from Vulgar Latin *degradus "a step," from Latin de- "down" (see de-) + gradus "a step; a step climbed;" figuratively "a step toward something, a degree of something rising by stages" (from PIE root *ghredh- "to walk, go").
360
32
How many degrees are in a semi-circle? Combien y a-t-il de degrés dans un demi-cercle ?
180
33
How many degrees are in a quarter circle? Combien de degrés y a-t-il dans un quart de cercle ?
90
34
An angle measuring less than 90 degrees Un angle inférieur à 90 degrés
acute angle angle aigu
35
An angle that measures 90 degrees Un angle qui mesure 90 degrés
right angle angle droit
36
An angle that is between 90 degrees and 180 degrees Un angle compris entre 90 et 180 degrés.
obtuse angle angle obtus
37
An angle that measures 180 degrees Un angle qui mesure 180 degrés
straight angle angle plat
38
An angle that measures more than 180 degrees Un angle qui mesure plus de 180 degrés
reflex angle angle de réflexion ou angle concave ## Footnote from re- "back" (see re-) + flectere "to bend" Angle complet = 360 degrés
39
How much of a circle is shaded in fraction form if 270 degrees are shaded? Quelle proportion d'un cercle est ombrée sous forme de fraction si 270 degrés sont ombrés ?
3/4 because 270/360 = 3/4 3/4 car 270/360 = 3/4
40
How much of a circle is shaded in fraction form if 180 degrees are shaded? Quelle proportion d'un cercle est ombrée sous forme de fraction si 180 degrés sont ombrés ?
1/2 because 180/360 = 1/2 1/2 car 180/360 = 1/2
41
How much of a circle is shaded in fraction form if 90 degrees are shaded? Quelle proportion d'un cercle est ombrée sous forme de fraction si 90 degrés sont ombrés ?
1/4 because 90/360 = 1/4 1/4 car 90/360 = 1/4
42
How much of a circle is shaded in fraction form if 45 degrees are shaded? Quelle proportion d'un cercle est ombrée sous forme de fraction si 45 degrés sont ombrés ?
1/8 because 45/360 = 1/8 1/8 car 45/360 = 1/8