Intermediate I Geometry and Measurement, (3-4 new curriculum), Intermédiaire I Géométrie et mesures, (3-4 nouveau programme) Flashcards
Two planes, lines, rays, or segments that are equidistant from each other when measured at a 90 degree angle out from one of them to the other
Deux plans, lignes, rayons ou segments qui sont équidistants l’un de l’autre lorsqu’ils sont mesurés à un angle de 90 degrés de l’un à l’autre.
parallel
parallèle
parallel = 1540s, in geometry, of lines, “lying in the same plane but never meeting in either direction;” of planes, “never meeting, however far extended;” from French parallèle (16c.) and directly from Latin parallelus, from Greek parallēlos “parallel,” from para allēlois “beside one another,” from para- “beside” (see para- (1)) + allēlois “each other,” from allos “other” (from PIE root *al- “beyond”). Figurative sense of “having the same direction, tendency, or course” is from c. 1600.
As a noun from 1550s, “a line parallel to another line.”
Two lines, rays, planes, or segments that intersect at a 90 degree angle
Deux lignes, rayons, plans ou segments qui se coupent à un angle de 90 degrés.
perpendicular
the corner of a piece of paper, the angle between the hands on an analog clock at 3:00, a capital letter L
perpendiculaire
le coin d’une feuille de papier, l’angle entre les aiguilles d’une horloge analogique à 3 heures, une lettre majuscule L
thouroughly + hang
thouroughly + hang
perpendicular = late 15c., perpendiculer, of a line, “lying at right angles to the horizon” (in astronomy, navigation, etc.), from an earlier adverb (late 14c.), “at right angles to the horizon,” from Old French perpendiculer, from Late Latin perpendicularis “vertical, as a plumb line,” from Latin perpendiculum “plumb line,” from perpendere “balance carefully,” from per “thoroughly” (see per) + pendere “to hang, cause to hang; weigh” (from PIE root *(s)pen- “to draw, stretch, spin”).
per + pendere
thouroughly + hang = balance carefully
perpendicularis = vertical
Have sides of equal length and interior angles of equal measure.
Avoir des côtés de même longueur et des angles intérieurs de même mesure.
regular polygons
(Will be convex by definition)
polygones réguliers
(seront convexes par définition)
polygon = in geometry, “a plane figure with numerous angles,” 1570s, from Late Latin polygonum, from Greek polygōnon, noun use of neuter of adjective polygōnos “many-angled,” from polys “many” (from PIE root *pele- (1) “to fill”) + -gōnos “angled,” from gōnia “angle, corner” (from PIE root *genu- (1) “knee; angle”).
regular = from Latin regula “rule, straight piece of wood” (from PIE root *reg- “move in a straight line”); Old English borrowed Latin regula and nativized it as regol “rule, regulation, canon, law, standard, pattern;” hence regolsticca “ruler” (instrument); regollic (adj.) “canonical, regular.”
A plane, two-dimensional closed shape bounded with straight lines. Can be both concave, or convex.
Forme plane, bidimensionnelle et fermée, délimitée par des lignes droites. Elle peut être concave ou convexe.
polygon
can be irregular or regular
concave polygon = at least one interior angle is greater than 180 degrees
convex polygon = all interior angles are smaller than 180 degrees
e.g.: triangles, quadrilaterals, pentagons, hexagons, octagons etc.
polygone
peut être irrégulier ou régulier
polygone concave = au moins un angle intérieur est supérieur à 180 degrés
polygone convexe = tous les angles intérieurs sont inférieurs à 180 degrés
ex : triangles, quadrilatères, pentagones, hexagones, octogones, etc.
list types of quadrilaterals
énumérer les types de quadrilatères
- squares
- rectangles
- parallelograms
- trapezoids (a quadrilateral with only one pair of parallel sides.)
- rhombuses (a parallelogram with opposite equal acute angles, opposite equal obtuse angles, and four equal sides.)
- Kites: A quadrilateral with two adjacent sides with equal lengths.
Les types de quadrilatères :
- carrés
- rectangles
- parallélogrammes
- trapézoïdes
- losanges (parallélogramme ayant des angles aigus opposés et égaux, des angles obtus opposés et égaux et quatre côtés égaux).
- Cerfs-volants : Un quadrilatère dont les deux côtés adjacents sont de même longueur.
trapezoid = trapezium or type of trapezium, 1706, from Modern Latin trapezoides, from Late Greek trapezoeides, noun use by Euclid of Greek trapezoeides “trapezium-shaped,” from trapeza, literally “table” (see trapezium), + -oeides “shaped” (see -oid).
rhombus = slightly earlier and more classical form of rhomb (q.v.), 1560s, from Late Latin rhombus, in the geometric sense.
rhomb = geometric figure, “oblique-angled equilateral parallelogram,” 1570s, from French rhombe, from Latin rhombus “a magician’s circle,” also a kind of fish, which in Late Latin took on also the geometric sense. This is from Greek rhombos “circular movement, spinning motion; spinning-top; magic wheel used by sorcerers; tambourine;” also “a geometrical rhomb,” also the name of a flatfish.
Watkins has this from rhembesthai “to spin, whirl,” from PIE *wrembh-, from *werbh- “to turn, twist, bend” (source also of Old English weorpan “to throw away”), from root *wer- (2) “to turn, bend” (see versus). But Beekes connects rhombos to rhembomai “to go about, wander, roam about, act random,” despite this being attested “much later,” a word of no clear etymology.
list types of triangles
énumérer les types de triangles
equilateral
isosceles
scalene
By angle:
right
obtuse
acute
équilatéral
isocèle
scalène
Par angle :
droit
obtus
aigu
equilateral = “having all sides equal,” 1560s, from Late Latin aequilateralis, from aequi- (see equal (adj.)) + lateralis (see lateral).
isosceles = “having two equal sides,” 1550s, from Late Latin isosceles, from Greek isoskeles “with equal legs; isosceles; that can be divided into two equal parts,” from isos “equal, identical” (see iso-) + skelos “leg,” from PIE *skel-es-, from root *skel- “bend, curve”
scalene = “having unequal sides,” in mathematics, 1680s, from Late Latin scalenus, from Greek skalēnos “craggy, rough; uneven, unequal,” of numbers, “odd,” of cones, “slant;” as a noun, “triangle with unequal sides” (trigōnon skalēnon). This is from skallein “to dig, stir up, hoe” (compare its derivative, skalops “a mole”), from a PIE root *skel- (1) “to split, tear, cut.”
obtuse = early 15c., “dull, blunted, not sharp,” from Latin obtusus “blunted, dull,” also used figuratively, past participle of obtundere “to beat against, make dull,” from ob “in front of; against” (see ob-) + tundere “to beat,” from PIE *(s)tud-e- “to beat, strike, push, thrust,” from root *(s)teu- “to push, stick, knock, beat” (source also of Latin tudes “hammer,” Sanskrit tudati “he thrusts”). Sense of “stupid, not acutely sensitive or perceptive” is by c. 1500. In geometry, in reference to a plane angle greater than a right angle,” 1560s.
acute = late 14c., originally of fevers and diseases, “coming quickly to a crisis” (opposed to chronic), from Latin acutus “sharp, pointed,” figuratively “shrill, penetrating; intelligent, cunning,” past participle of acuere “to sharpen” (literal and figurative), from PIE root *ak- “be sharp, rise (out) to a point, pierce.”
two angles that compose 90 degrees (compose means “add to”)
deux angles dont la somme égale 90 degrés (qui composent 90 degrés –> composer signifie “ajouter à”)
complementary angles
angles complémentaires
complementary = from complement (n.) + -ary. Sense of “forming a complement, mutually completing each other’s deficiencies,” is attested by 1794, in reference to the calendar of the French Revolution; in reference to colors which in combination produce white light, by 1814. Earlier in the sense “completing, forming a complement” was complemental (c. 1600).
complement = from Latin complementum “that which fills up or completes,” from complere “fill up,” from com-, here probably as an intensive prefix (see com-), + plere “to fill” (from PIE root *pele- (1) “to fill”).
two angles that compose 180 degrees
deux angles qui composent 180 degrés
supplementary angles
angles supplémentaires
supplementary = 1660s, “supplemental, added as something extra,” from supplement (n.) + -ary. Suppletory in the sense of “supplying deficiencies” is from 1620s,
supplement = late 14c., “that which is added” to supply a deficiency, from Latin supplementum “that which fills up, that with which anything is made full or whole, something added to supply a deficiency,” from supplere “to fill up”; “fill up or supply by additions, add something to,” 1829,
supply = from Latin supplere “fill up, make full, complete,” from assimilated form of sub “up from below” (see sub-) + plere “to fill” (from PIE root *pele- (1) “to fill”).
basic unit of length in the metric system
unité de longueur de base du système métrique
metre (m)
mètre (m)
metre is the British English spelling (Metre is the standard spelling of the metric unit for length in nearly all English-speaking nations, the exceptions being the United States and the Philippines which use meter)
Old English meter “meter, versification,” from Latin mētrum, from Greek metron “meter, a verse; that by which anything is measured; measure, length, size, limit, proportion” (from PIE root *me- (2) “to measure”).
prefix meaning one thousand
préfixe signifiant mille
milli (m)
milli (m)
word-forming element meaning “thousand; thousandth part (of a metric unit),” from combining form of Latin mille “thousand”
prefix meaning one hundred
préfixe signifiant cent
centi (c)
centi (c)
word-forming element meaning “one hundred” or “one hundredth part,” used in English from c. 1800, from the French metric system, from Latin centi-, combining form of centum “one hundred”
prefix meaning ten
préfixe signifiant dix
deci (d)
déci (d)
in the metric system, word-forming element denoting one-tenth of the standard unit of measure, 1801, from French deci-, taken arbitrarily from Latin decimus “tenth,” from decem “ten” (from PIE root *dekm- “ten”).
How many millimetres are in one metre?
Combien de millimètres y a-t-il dans un mètre ?
1000
How many centimetres are in one metre?
Combien de centimètres y a-t-il dans un mètre ?
100
How many decimetres are in one metre?
Combien de décimètres y a-t-il dans un mètre ?
10
What is m? (metric unit)
Qu’est-ce que m ? (unité métrique)
metre
mètre
What is dm?
Qu’est-ce que le dm ?
decimetre
décimètre
What is cm?
Qu’est-ce que le cm ?
centimetre
centimètre
What is mm?
Qu’est-ce que le mm ?
millimetre
millimètre
What are units of length in the imperial system?
Quelles sont les unités de longueur dans le système impérial ?
inch (inches) in.
foot (feet) ft
yard (yards) yd
mile (miles) mi
pouce (pouces) po
pied (pieds) pi
verge (verges) vg ou yard (yards) yd
mille (milles) mi
L’emploi des unités de mesure impériales et de leurs divisions (pied, pieds : pi ou ‘; pouce, pouces : po ou ″, ¼ po; livre, livres : lb, ½ lb; once : oz, etc.) se fait maintenant beaucoup plus rare dans les domaines techniques et est déconseillé par le Bureau de normalisation du Québec.
La verge anglaise (yard en anglais), appelée simplement verge, est une unité de longueur du système d’unités de quelques pays, dont le Royaume-Uni (système d’unités impériales), les États-Unis et résiduellement le Canada, qui équivaut à 0,914 4 mètre. Son symbole international est « yd ». Son symbole au Canada francophone est « vg »
En français, le mille terrestre américain et le mille international peuvent s’écrire aussi mile (pluriel miles), mais pas le mille romain ou le mille marin.
How many inches are in one foot?
Combien y a-t-il de pouces dans un pied ?
12
How many feet are in one yard?
Combien de pieds y a-t-il dans une verge ?
3
An inch is about how many centimetres?
Un pouce correspond à environ combien de centimètres ?
About 2.54 cm = 1 inch
Some people round this to 2.5 or just say there is about two and a half centimetres in an inch.
Environ 2,54 cm = 1 pouce
Certains arrondissent ce chiffre à 2,5 ou disent simplement qu’il y a environ deux centimètres et demi dans un pouce.
What is the closest imperial unit of measurement in length to a metre? Which is larger?
Quelle est l’unité de mesure impériale de longueur la plus proche du mètre ? Laquelle est la plus grande ?
yard
The metre is larger than the yard, so swimming in a 25 yard pool is shorter than a 25 m pool and you might think you are swimming more quickly in the 25 yard pool.
la verge
Le mètre est plus grand que la verge. Nager dans une piscine de 25 verges est donc plus court que dans une piscine de 25 mètres et vous pourriez penser que vous nagez plus vite dans la piscine de 25 verges.