Intermediate I Patterns, Relations, Algebra, and Time (3-4 new curriculum), Intermédiaire I Modèles, relations, algèbre et temps (3-4 nouveau programme) Flashcards

1
Q

can indicate position in a sequence

peut indiquer la position dans une séquence

A

ordinal numbers

les nombres ordinaux

ordinal = c. 1400, “regular, ordinary; well-regulated, proper,” from Old French ordinel and directly from Late Latin ordinalis “showing order, denoting an order of succession,” from Latin ordo (genitive ordinis) “row, series” (see order (n.)). Meaning “marking the place or position of an object in an order or series” is from 1590s.

order = from Latin ordinem (nominative ordo) “row, line, rank; series, pattern, arrangement, routine,” originally “a row of threads in a loom,” from Proto-Italic *ordn- “row, order” (source also of ordiri “to begin to weave;”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

What is the name for a sequence that has a definite end?

Quel est le nom d’une séquence qui a une fin définie ?

A

finite sequence

e.g. a countdown

séquence finie

par exemple, un compte à rebours

finite = early 15c., “limited in space or time, finite,” from Latin finitum, past participle of finire “to limit, set bounds; come to an end”

finish = late 14c., “to bring to an end;” mid-15c., “to come to an end” (intransitive), from Old French finiss-, present participle stem of fenir “stop, finish, come to an end; die” (13c.), from Latin finire “to limit, set bounds; put an end to; come to an end,” from finis “that which divides, a boundary, border,” figuratively “a limit, an end, close, conclusion; an extremity, highest point; greatest degree,” which is of unknown origin, perhaps related to figere “to fasten, fix” (see fix (v.)). Meaning “to kill, terminate the existence of” is from 1755.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

A list of terms arranged in a certain order

Une liste de termes classés dans un certain ordre

A

sequence

une séquence

sequence = By 1570s in the general sense of “a series of things following in a certain order, a succession,”

late 14c., in church music, a composition said or sung after the Alleluia and before the Gospel, from Old French sequence “answering verses” (13c.) and directly from Medieval Latin sequentia “a following, a succession,” from Latin sequentem (nominative sequens), present participle of sequi “to follow” (from PIE root *sekw- (1) “to follow”).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What is the name for a sequence that does not end?

Quel est le nom d’une séquence qui ne se termine pas ?

A

infinite sequence

séquence infinie

infinite = late 14c., “eternal, limitless,” also “extremely great in number,” from Old French infinit “endless, boundless” and directly from Latin infinitus “unbounded, unlimited, countless, numberless,” from in- “not, opposite of” (see in- (1)) + finitus “defining, definite,” from finis “end” (see finish (v.)). The noun meaning “that which is infinite” is from 1580s.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

even numbers

nombres pairs

A

the infinite sequence of integers which are multiples of 2

la suite/séquence infinie des entiers multiples de 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

odd numbers

nombres impairs

A

the infinite sequence of integers which are not divisible by 2

la suite infinie des entiers non divisibles par 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

How could you determine a missing term in a skip-counting sequence?

Comment pouvez-vous déterminer un terme manquant dans une séquence de comptage par bonds ?

A

add from the last term according to the pattern you see

multiply the spot number by the “added number”

ajoutez à partir du dernier terme en suivant le modèle que vous voyez

multipliez le nombre repéré par le “nombre ajouté”.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

arithmetic sequence

séquence arithmétique

A

uses addition or subtraction to get to the next term in the sequence

e.g. skip counting sequences are arithmetic

utilise l’addition ou la soustraction pour atteindre le terme suivant de la séquence

par exemple, les séquences de comptage de sauts sont arithmétiques

arithmetic as a noun = “art of computation, the most elementary branch of mathematics,” mid-13c., arsmetike, from Old French arsmetique (12c.), from Latin arithmetica, from Greek arithmetikē (tekhnē) “(the) counting (art),” fem. of arithmetikos “of or for reckoning, arithmetical,” from arithmos “number, counting, amount” (from PIE *erei-dhmo-, suffixed variant form of root *re- “to reason, count”).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

geometric sequence

séquence géométrique

A

uses multiplication or division to get to the next term in the sequence

It has a constant multiplicative change between consecutive terms

e.g. 1, 5, 25, 125 …

note: also gives us an exponential graph (you will learn about this later)

utilise la multiplication ou la division pour passer au terme suivant de la séquence

Il y a un changement multiplicatif constant entre les termes consécutifs

par exemple 1, 5, 25, 125 …

note : nous obtenons également un graphique exponentiel (vous en apprendrez plus à ce sujet plus tard)

geometric = 1620s, “pertaining to geometry,” shortened form of geometrical (q.v.). In reference to a style of ancient Greek pottery decoration characterized by straight lines and angles, and the associated culture, 1902.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Fibonacci sequence

Séquence de Fibonacci

A

Created by adding the last two terms together to get the next term

0, 1, 1, 2, 3, 5, 8, 13, …

Créé en additionnant les deux derniers termes pour obtenir le terme suivant

0, 1, 1, 2, 3, 5, 8, 13, …

Fibonacci = 1891 in reference to a series of numbers in which each is equal to the sum of the preceding two, from name of Leonardo Fibonacci (fl. c. 1200) Tuscan mathematician.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

initial term

le terme initial

A

the first number in a sequence

le premier chiffre d’une séquence

initial = 1520s, “of or pertaining to a beginning,” from French initial or directly from Latin initialis “initial, incipient, of the beginning,” from initium “a beginning, a commencement; an entrance, a going in,” noun use of neuter past participle of inire “to go into, enter upon, begin,” from in- “into, in” (from PIE root *en “in”) + ire “to go” (from PIE root *ei- “to go”). Related: Initially.

term = from Latin terminus “end, boundary line,” in Medieval Latin “expression, definition,” related to termen “boundary, end”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

constant change

changement constant

A

the amount that you must add to the term to get the next term

note: also known as slope of the line in later years, giving a linear relation

le montant qu’il faut ajouter au terme pour obtenir le terme suivant

note : également connue sous le nom de pente de la ligne dans les années ultérieures, donnant une relation linéaire

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Example of a base 60 system

Exemple de système de base 60

A

a clock

une horloge

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

basic unit of time

unité de base du temps

A

second

Une seconde

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

How many seconds are in a minute?

Combien y a-t-il de secondes dans une minute ?

A

60

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

How many minutes are in an hour?

Combien de minutes y a-t-il dans une heure ?

17
Q

What are the two common time cycles?

Quels sont les deux cycles temporels les plus courants ?

A

duration relative to 12:00 in two 12-hour cycles

duration relative to 0:00 in one 24-hour cycle

durée relative à 12:00 dans deux cycles de 12 heures

durée relative à 0:00 dans un cycle de 24 heures

18
Q

What are some common fractions used when describing time?

Quelles sont les fractions couramment utilisées pour décrire le temps ?

A

quarter past the hour

half past the hour

quarter to the hour

quart d’heure (Il est 3 heures et quart.)

heure et demie (Il est 3 heures et demie.)

quart d’heure (Il est 3 heures moins le quart.)

19
Q

What is duration?

Qu’est-ce que la durée ?

A

duration = end time - start time

durée = heure de fin - heure de début

20
Q

What fraction of a circle is 15 minutes on an analog clock?

Quelle fraction de cercle correspond à 15 minutes sur une horloge analogique ?

A

1/4

Because 15/60 = 1/4

1/4

Parce que 15/60 = 1/4

21
Q

What fraction of a circle is 20 minutes on an analog clock?

Quelle fraction de cercle correspond à 20 minutes sur une horloge analogique ?

A

1/3

Because 20/60 = 1/3

1/3

Parce que 20/60 = 1/3

22
Q

What fraction of a circle is 30 minutes on an analog clock?

Quelle fraction de cercle correspond à 30 minutes sur une horloge analogique ?

23
Q

What fraction of a circle is 40 minutes on an analog clock?

Quelle fraction de cercle correspond à 40 minutes sur une horloge analogique ?

24
Q

What fraction of a circle is 45 minutes on an analog clock?

Quelle fraction de cercle correspond à 45 minutes sur une horloge analogique ?