precursors, carcinogenesis... Flashcards

(55 cards)

1
Q

what precancer stages are seen in the cervix/vulva/anus/bronchus?

A

intra-epithelial neoplasms/lesions.
non invasive. stay on epithelial side of the BM.
cervix = cervical/squamous inta-epithelial neoplasia (uk/us classification)
CIN1 = low grade SIL, CIN2 and 3 = high grade SIL

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

cytology of intraepithelial neoplasms.

A
  • abnormal nuclei
  • abnormal mitosis,
  • loss of nuclear polarity
  • loss of differentiation.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

why are pre-cancerous changes imp?

A
  • suggest biologically a sequential progression from CIN to invasive cancer.
  • clinically important as they can be detected (cervical smears or liquid based cytology).
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

pre cancerous changes in breast tissue?

A

Ductal carcinoma in situ (DCIS)
may persist for many years before cancer.
excess no of neoplastic epithelial cells within the enlarged ducts or groups of small ducts causing dilation.
-pleomorphism, hyperchromasia, loss of differentiation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

how many women are affected by breast cancer in developed countries

A

about 1 in 11

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

adenocarcinoma incidence

A

second commonest cancer in developed countries, over 90% thought to be preceded by an intraepithelial phase called an adenoma.
screening for bowel cancer and adenomas started in 2007-2009 in the UK.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

describe large intestine adenomas

A

all adenomas have dysplastic glandular epithelium and this is graded ow to high. high grade regions can evolve into invasive adenocarcinoma.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

importance of large intestine adenomas?

A

a sequence of changes can be traced.
adenomas (polyps) are not uncommon, particularly in older people.
invasive cancer often develops from an adenoma as a result of progression from dysplasia to cancer.
“adenoma-carcinoma” sequence. low grade - high grade dyplastic epithelium - invasive carcinoma.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

what are carcinogens/oncogens?

A

agents which induce cancer

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

what is carcinogenesis/oncogenesis?

A

the process of cancer induction

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

what are the classes of carcinogen

A

1 - chemical - molecules
2 - physical - UV, ionising radiation
3 - biological - viruses, bacteria, parasites

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

how is cancer (as a multi-step process) studied?

A
  • animal models
  • in vitro carcinogenesis
  • replicative senscence, immortalisation and telomeres.
  • inherited cancers in humans
  • molecular genetic analysis of cancers and their precursor lesions.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

2 potent carcinogens in tar

A

3-benzpyrene

3’methylcholanthene

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

5 principles of carcinogenic action

A

1 - dose response
2 - latent period (the length being dose dependent)
3 - threshold dose - although if a secondary non-carcinogenic stimulus is applied afterwards that is able to promote growth to the site of a sub-threshold dose, tumours develop.
4 - initiation and promotion
5 - progression (a thrid stage after initiation and progression)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

2 stages of carcinogenesis

A

1 - initiation - irreversible change of a normal cell to a potentially cancerous one. Carcinogens are mutagens.
2 - promotion - a process which permits clonal amplification of the initiated cell. promoters are not carcinogens, they just induce proliferation. a benign neoplasm forms.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

what is progression in carcinogenesis?

A

a potential 3rd stage of the model. acquisition of further mutations within the neoplastic clone to drive progression to malignancy.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

what is cell transformation

A

the change in phenotype and behaviour of a cell.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

what is replicative senscence

A

the fact that cells can undergo only a defined number of cell divisions in tissue culture before cycle arrest and apoptosis.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

what the hayflick number

A

the number of divisions a cell can undergo before apoptosis.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

cell immortalisation in humans (long lived) vs mice or rats

A

very rarely undergo spontaneous immortalisation in tissue culture

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

name some viral oncogenes that can cause immortalisation.

A

SV40 T
adenovirus E1A and E1B
HPV 16 E6 and E7
chemical carcinogens rarely do this.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

what is the cause of immortalisation in tissue culture

A

activation of telomerase to maintain telomere length.

high activity in at least 90% of cancer and a fraction of precursors/germ cells/stem cells/ some other somatic tissues.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

what are telomeres?

A

repetitive sequences TTAGGG at the ends of chromosomes. they form loops to protect chromosome ends. they don’t look like dsDNA breaks and hence prevent end-end fusion

24
Q

theory for replicative senscence

A

telomere hypothesis.
telomerase RNA binds the overhanging 3’ end. telmoerase uses it to elongate the bound DNA (reverse transcriptase) by one repeat unit, the lagging strand s elongated by primase and polymerase, then the telomerase RNA is removed.

25
the role of replicative senescence in stem cells, transit amplifying cells, and differentiated cells.
- stem cells express it. - transit amplifying progenitors have a programmed decline in replicative activity due to lack of telomerase. - replicative senescence is one of the strict controls that minimises the chances of a cell escaping antiproliferative mechanisms.
26
who does retinoblastoma typically affect?
its a rare childhood cancer. peak incidence at 3-4 years old. can be inherited or sporadic.
27
what happens in retinoblastoma
both alleles of RB1 mutated. causing loss of the wt RB1 gene product. the tumour cells show loss of heterozygosity. wt = wild type
28
inherited RB?
either pre/pre or pre/post zygotic mutation
29
sporadic RB?
both post zygotic mutations
30
somatic cell in individuals who inherit a familial cancer
heterozygous in all somatic cells. wt/mut | tumour cells = mut/mut
31
gene and function in retinoblastoma
RB1 - cell cycle checkpoint control
32
gene and function in familial adenomatous polyposis coli
APC - signal transduction
33
gene and function in Li fraumeni
p53 - cell cycle control/DNA damage
34
gene and function in hereditary non polyposis colon cancer/ lynch
MLH1,MSH2 - DNA mismatch repair
35
gene and function in familial breast and ovarian cancer
BRCA-1 and BRCA-2 , DNA repair, ds break
36
gene and function in basal cell naevus
ptch - signal transduction
37
whats a proband?
the affected individual
38
gene and function in ataxia telangiectasia
AT - checkpoint control/DNA repair | inherit 2 mutant alleles
39
gene and function in blooms syndrome
BI - DNA helicase | inherit 2 mutant alleles
40
gene and function in fanconi's anaemia
FA - DNA repair | mut/mut inheritance
41
gene and function in xeroderma pigmentosa
XP - DNA excision repair | mut/mut inheritance.
42
what does study of familial cancer tell us
1 - it is genetic 2 - more than one mutation is necessary for progression 3 - maintaining error free DNA is crucial 4 - controls restricting cellular lifespan must be overcome for tumour progression 5 - cancer is a multistage process
43
what are oncogenes
alleles which if mutated act in a gain-of-function action. - mut usually only one allele. - usually normal genes important in growht control
44
how do viral oncogenes cause cancer
normal cellular growth genes become inappropriately expressed under the powerful action of viral promoters
45
5 mechanisms of activating oncogenes
``` 1 - retrovirus insertion 2 - retrovirus promoter insertion 3 - point mutation 4 - oncogene amplification or truncation 5 - inappropriate regulation of expression ```
46
give an example of retrovirus encoded oncogene
rous sarcoma virus in chickens. Src
47
give an example of retrovirus promoter insertion
integration of provirus into a LTR beside a proto-oncogene and hence its expression under the control of viral promoters or enhancers. = insertional mutagenesis. seen in a leukaemia of chickens where c-myc is overexpressed
48
give an example of an oncogene activated by point mutation
RAS point mutation at codon 12 or 13 so that it cannot hydrolyse GTP so permanently on. K-ras protooncogene
49
family members of RAS
K-ras, H-ras, N-ras
50
give an example of an oncogene activated by amplification or truncation
EGF-R | squamous cell carcinoma - amplified to 100s of copies. or extracellular domain is truncated to constitutively activate.
51
HER2 is a member of which family
EGF-R family. amplified in many breast cancers and can be treated with hercetpin which blocks its ligand
52
neuroblastoma amplified gene?
N-myc oncogene. paediatric tumour. degree of amplification is proportional to the aggressiveness of the tumour. by deletion of the regulatory sequences for the promoter or use of an inappropriate promoter
53
4 functions of oncogenes
1 - growth factors - sis (simian sarcoma virus) platelet derived growth factor 2 - receptors - erbB (avian erythroblastosis virus) EGF-R 3 - signalling proteins - abl (abelson mouse leukaemia virus) tyrosine kinase, or ras (rat sarcoma virus) GTP-neucleotide binding molecular switch 4 - transcription factors - myc (myelocytomatosis virus) binds DNA stimulates proliferation and regulates apoptosis
54
describe tumour suppressor genes
1 - alleles which must be inactivated. 2 - both must be mutated, suppressed or lost. 'recessive' 3 - they are critical control and regulatory genes many of which restrain cell proliferation.
55
summary of oncogenesis
1 - its a multistep process 2 - lesions preceding cancer can be identified by morphological changes 3 - these changes reflect the molecular changes that are mutations in genes controlling proliferation, DNA integrity and cell death. gene mutations can be gain of funciton in proto-oncogenes or loss of function in tumour suppressor genes.