Raisonnement démonstratif Flashcards
(35 cards)
Les 2 autres noms du raisonnement démonstratif ?
Déductif ou incertain
En quoi consiste le raisonnement démonstratif ?
A appliquer 1 règle à 1 situation particulière
Comment procède le raisonnement démonstratif ?
Part de prémisse réputées vraies pour construire 1 conclusion qui n’a pas d’alternative
Sur quoi porte la validité ?
Sur la structure formelle (pas le contenu) cad la RELATION entre les prémisses (aucun rapport avec la réalité)
Qu’apporte la conclusion ?
N’ajoute pas d’information aux prémisses
Met en évidence des informations implicites dans les prémisses
Affecte 1 valeur de vérité aux prémisses à 2 conditions (principe tiers exclu)
Les 2 propriétés de la valeur de vérité ?
Exclusives et Discontinues (autre façon d’exprimer le principe du tiers exclu)
Quelles sont les 2 catégories de raisonnement démonstratif ?
Propositionnel et catégorique
Quelles sont les 4 catégories du raisonnement propositionnel ?
Conjonction / Disjonction /Conditionnel / incompatibilité
Quelles dont les 2 types de disjonctions possibles ?
Inclusive / Exclusive
Quelles dont les 2 types de conditionnels possibles ?
Implication / Equivalence
Quelles sont les 2 formes de raisonnement catégorique ?
Inférences immédiates + syllogismes catégoriques
Objectif de la logique classique ?
Identifier les règles d’enchaînement des propositions.
Pas intéressée par le contenu.
P & Q
P et Q
P v Q
Disjonctions inclusives
Ou P ou Q ou les 2
P w Q
Disjonction exclusive
Ou P ou P mais pas les 2
P => Q
Implication
Si P alors Q
P <=> Q
Équivalence (bidirectionnelle)
Si P et seulement si Q + si Q et seulement si P
P I Q
Incompatibilité
Pas à a la fois P et Q (on n’a pas le beurre et l’argent du beurre)
Quel schéma valide = associé à Disjonction inclusive ?
Modus Tollendo Ponens
Quel schéma valide = associé à conjonction ?
Addition / Elimination
Que permettent les différents connecteurs ?
Décrire formellement ≠ règles de raisonnement aboutissant à 1 conclusion certaine cad VRAIE (1 seule valeur).
Exemple de schéma de déduction Modus Ponens
s’il pleut, alors, j’ouvre mon parapluie.
Il pleut => j’ouvre mon parapluie
Exemple de schéma de déduction Modus Tollens
S’il pleut, alors j’ouvre mon parapluie.
Je n’ouvre pas mon parapluie, donc il ne pleut pas
Exemple de schéma de déduction Modus Tollendo Ponens
Le train est à l’heure OU je suis en retard.
Le trains n’est pas à l’heure, donc je suis en retard au bureau (Disjonction inclusive)