1: Drug Metabolism Flashcards
(52 cards)
2 general outcomes of xenobiotic metabolism
- termination: loss of therapeutic or toxic activity
2. bioactivation: gain in therapeutic or toxic activity
sites of metabolism throughout the body
- **LIVER
- GI tract
- lungs
- kidneys
- brain
- skin
what does first pass metabolism refer to?
the liver is the first organ perfused by compounds absorbed in the gut (oral compounds) -> go through here before entering the circulation (affects dose needed)
definition of oral bioavailability
fraction of total dose that reaches systemic circulation
4 factors affecting bioavailability
- solubility
- membrane permeability
- P-glycoprotein efflux
- pre-systemic first pass metabolism (intestinal, hepatic)
two phases of drug metabolism
I: chemical modification/biotransformation to introduce new functional group or expose group for phase II rxns
II: conjugation of polar group with drug (often kills activity)
what is the importance of drug metabolism?
frequently the most important determinant of duration and intensity of drug response
- alters pharmacological activities of drugs
- influences half-life
3 ways to terminate xenobiotic action
- bioinactivation
- detoxification
- elimination
2 ways in which metabolism causes bioactivation
- prodrugs
- toxification (particularly via phase I rxns)
bioinactivation vs. detoxification
terminology has more to do with intent:
- bioinactivation -> stop action of therapeutic drugs
- detoxification -> elimination of toxicity of a toxin
how does metabolism change drugs to aid in elimination?
increase polarity of the drugs:
- decrease lipid solubility
- increase water solubility
NEED BOTH
definition of prodrug
drug metabolite(s) may be more active than the parent compound, or the parent may require activation for the biological activity (bioactivation)
example of toxification
polyaromatic hydrocarbons from cigarette smoke: phase I enzymes metabolize them into planar epoxide compounds, which can intercalate into DNA (mutagenic) –> thought to be the basis of carcinogenicity of cigarette smoke
why are most adverse reactions related to drug metabolism idiosyncratic (unpredictable)?
b/c there are many poorly understood factors:
- which proteins react with reactive metabolite?
- which protein modifications lead to toxicity and how?
- many risk factors influence reactive metabolite formation and inactivation
most frequent reason that new therapeutic agents are not approved by FDA?
drug-induced hepatic damage
reactions that occur in phase I metabolism
typically oxidation
-also reduction, hydrolysis
typical enzyme of phase I reactions? what other substrates are necessary?
cytochrome P450 (CYP) -utilizes NADPH and O2
what happens to the metabolites of phase I reactions? 2 possible outcomes
- excreted if sufficiently polar
2. functionalized to undergo subsequent phase II rxn
what determines what the substrates will be for the CYP enzymes?
the shape of the protein determines the size/shape of entry and exit access pathways, which therefore determines which substrates will fit and which will not
in the cytochrome P450 system, what enzyme plays the electron transport role? where do the electrons come from?
P450 reductase, utilizing an electron from NADPH
what are the three most important/prevalent CYPs involved in human drug metabolism?
- CYP3A4/5
- CYP2D6
- CYP2C8/9
why is it therapeutically important that the CYPs are responsible for so much of drug metabolism?
significant chance for drug-drug interactions during multi-drug treatment –> when metabolized by the same CYP isoform, only one of the two drugs can be metabolized by the same CYP entity at the same time –> increased half-life, which may cause toxicity
describe the catalytic center of the CYPs
- contains an iron-heme cofactor
- iron coordinated to 4 N’s of the heme, to 1 thiolate ligand from Cys, and to 1 water molecule (in native state)
- upon reduction, maximal light absorption “soret peak” at 450 nm
describe the reaction mechanism involving the catalytic iron-heme cofactor of the CYP catalytic site
ferric, low spin –> ferric, high spin –> ferrous –> ferric, hydroperoxide –> oxyferryl, compound I –> ferric –> repeat from start