Graphique et barre d'erreur Flashcards

(10 cards)

1
Q

Q : Quels graphiques pour les données qualitatives ou quantitatives ?

A

Qualitatives : diagrammes en barres, camembert

Quantitatives : histogrammes, boxplots, nuages de points, graphiques linéaire

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Q : Que représente une barre d’erreur ?

A

R : Un intervalle de confiance pour estimer la moyenne de la population totale à partir de l’échantillon.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Q : Formule de l’erreur standard (s.e.m) ?

A

s.e.m= écart-type / racine carré (n)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Q : Théorème utilisé pour relier l’échantillon à la population ?

A

R : Le Théorème Central Limite (TCL), valable si

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Q : Quelles sont les composantes d’un boxplot ?

A

Médiane (Q2)

1er quartile (Q1)

3e quartile (Q3)

IQR = Q3 - Q1

Moustaches =
[Q1−1,5×IQR;Q3+1,5×IQR]

Outliers : au-delà des moustaches

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

❌ Pourquoi éviter les diagrammes en bâtons pour des données quantitatives ?

A

➡️ Ils masquent la distribution, la dispersion, et l’effectif. Ils ne montrent pas les mesures appariées ni les outliers.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

❓ Quelle loi décrit la distribution des moyennes d’échantillon quand n est grand ?

A

➡️ La loi normale (via le théorème de la limite centrale).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

❓ Que signifie une médiane non centrée dans un boxplot ?

A

➡️ Que la distribution est asymétrique (pas normale).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

❓ Que représente un intervalle m ± s / √n ?

A

➡️ Un intervalle de confiance à 67 %.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

❓ Quels sont les 3 types de barres d’erreurs ? ➡️

A

m ± s → Non interprétable

m ± s.e.m. → IC à 67 %

m ± 1,96 × s / √n → IC à 95 %

m ± 3 × s / √n -> IC à 99,7 % :

(IC : intervalle de confiance)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly