Lecture 8 - Gut Microbiota Flashcards
(43 cards)
Broad change in prevalence of diseases between 1950 and 2000
Reduction in incidence of infectious diseases
Increase in autoimmune, allergic, inflammatory disease
Hygiene hypothesis
Increased cleanliness associated with increased levels of autoimmune disease.
Reduced exposure to infectious agents leads to immune dysregulation
Hypotheses for why autoimmune diseases are increasing in prevalence in the Western world
1) Hygiene hypothesis
2) Microbiota hypothesis (human gut evolved to have bacteria)
3) Diet hypothesis (human microbiome changes according to diet)
Factors leading to altered diet in developed world
Economic
Demographic
Epidemiological
Aspects of Western diet that could lead to dysbiota
High in fat, sugar
Highly refined and processed
Low in fibre (important)
Factors potentially affecting microbiota composition
Host genetics Maternal transfer, early colonisation Antibiotics, medications Infection Inflammation Stress Hygiene Age
Is the microbiome uniform through the GIT?
No. Increases in bacterial density/g from the stomach to the colon.
Human vs microbial genome in human body
Human genome has ~23,000 genes.
Microbiome has over 100,000 genes
Advances in studying GIT microbiome 1) 2) 3) 4)
1) Generation of germ-free mice
2) High throughput DNA sequencing
3) Transcriptional and metabolomic tools, with which to measure microbiota impact on host physiology, immunity, development
4) Development of tractable experimental systems (C. elegans, drosophila)
Germ-free mice
Mice raised in a germ-free environment. Can be from different genetic lines, clonal, non-clonal.
Can selectively restore bacteria in microbiome
High throughput DNA sequencing effect on studying microbiome
Can generate metagenomic analyses to compare metabolic and taxonomic data from different microbiota
What is the human microbiome project?
1)
2)
3)
1) NIH
2) First phase (2007-2012). Characterised composition and diversity of human microbiome in skin, nose, mouth, GIT, UGT. Evaluated metabolic potential.
3) Second phase (2013-2015). Create the first integrated dataset of biological properties of host and microbiome from cohort studies of microbiome-associated diseases
What is a healthy microbiome?
1) Varies a lot between individuals
2) Predictions can be made loosely based on country, breast feeding, level of education
3) No core microbiotal genome, but broad metabolic characteristics are shared
Study into the diversity of microbiota
1)
2)
3)
1) 16S rRNA sequences compared in mono- and dizygotic twins
2) No core genome shared. High variability in species/phylum composition
3) Analysis of genes showed a similarity in metabolic capacities
Two major phyla in GIT microbiome
Firmicutes
Bacteroidetes
Study into diet-induced changes in GIT microflora 1) 2) 3) 4) 5)
1) Microbiota of children from Burkina-Faso and Florence were compared.
2) Bacteroidetes dominated in Burkina-Faso
3) Firmicutes dominated in Italy
4) Diet has a larger role in shaping microbiome than ethnicity, climate, sanitation, hygiene
5) More pathogenic bacteria, lower SCFA levels in Italian children
Functional members of non-pathogenic GIT microbiome
1) Probiotics
2) Autobionts
3) Pathobionts
Probiotics
Transiently-present bacteria.
Can be beneficial.
EG: bifidobacterium spp, lactobacillus spp
Autobionts
Permanent, symbiotic, immunomodulatory.
Part of normal microbiome.
Direct influence on host immune function
EG: Bacteroidetes fragilis, clostridium XIV
Pathobionts
Permanent, parasitic/infectious.
Don’t cause disease normally, unless microbiome is perturbed.
EG: Clostridium difficile, helicobacter
How are autobionts adapted to life in the GIT?
Express polysaccharide utilisation loci
Allows them to digest polysaccharides from plants.
Necessary for humans to be able to get nutrition from certain sugars (humans can only digest starch, maltose, sucrose).
Example of a polysaccharide utilisation locus in bacteroidetes ovatus
Xyloglucan PUL
Digestion of dietary fibre
1) Gut bacteria digest dietary fibre into short-chain fatty acids.
Bacteroidetes make acetate (2C), propionate (3C)
Firmicutes make butyrate (4C).
2) Short-chain fatty acids diffuse across lumen, are taken up by host transporters or bind to GPCR
Roles of short-chain fatty acids in GIT 1) 2) 3) 4) 5)
1) Stimulate mucus production by epithelial cells
2) Stimulate B cells to make IgA
3) Promote differentiation of Treg, leading to tolerance
4) Maybe lead to inflammosome activation, IL-18 release. This promotes epithelial integrity
5) Inhibition of inflammaroty NF-kB