Mathematical skills Flashcards

(56 cards)

1
Q

what are the three levels of data

A

nominal, ordinal, interval

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

what is nominal data and give an example

A

Data that are produced as named categories e.g what is your favourite type of chocolate
1. milk
2. dark
3. white

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

What is ordinal data and give an example

A

Data which can ranked in ‘order’. There needs to be an increase in your data. Examples of ordinal data are; positions in a race, rating scales, class grade rankings. DATA IS NOT CONTINUOUS

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

what is interval data and give an example

A

divisions between the points on an interval scale are equal and same for the whole world e.g metric scale, height, time. DATA IS CONTINUOUS

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

what is quantitative data

A

Quantitative data is data that can be measured and is usually numerical, with units associated

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

strengths and weaknesses of quantitative data

A

strengths: can be easily compared and trends can be easily spotted
weaknesses: does not provide context

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

what is qualitative data

A

non-numerical and descriptive. Diary accounts, open ended questions on a questionnaire and unstructured interviews all produce qualitative data.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

strengths and weaknesses of qualitative data

A

strengths: have context and know why people did certain things
weaknesses: hard to compare

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

What is primary data

A

Data collected first-hand by research that intended to collect data on the subject

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

what is secondary data

A

Data collected by someone else that is useful for the topic being investigated

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

strengths and weaknesses of primary data

A

strengths: Is gathered first hand, therefore there is more certainty on how valid it is
could fine new results
weaknesses: Expensive
time consuming
possibly biased

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

strengths and weaknesses of secondary data

A

strengths: doesn’t take too long to collect
can gather lots of data in a short time
weaknesses: can’t be sure how reliable it is
might not be relevant
data can be out of date

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

what is raw data

A

Data that psychologists have collected from an investigation, but has not been processed or analysed

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

what should a raw data table have

A

1) a title outlining what the table is about
2) rows and columns clearly labelled
3) units

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

what is the mean

A

mean is a measure of central tendency

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

how do you calculate mean

A

add up all results and divide by the number of results

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

strengths and weaknesses of mean

A

strengths: easy to calculate and useful for stats test
weakness: affected by anomalies

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

what is the median

A

The middle value in a set of data that is organised by increasing value

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Strengths and weaknesses of median

A

strengths: not affected by outliers
weaknesses: not as useful
required sorting

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

what is the mode

A

Provides the most frequent or common value in a data set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

strengths and weaknesses of mode

A

strengths: useful of calculating average for nominal data
weaknesses: can have multiple ones or none at all
doesn’t represent the spread in an accurate way

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

what is the range

A

A measure of dispersion - the difference between the highest and lowest value in a set of data.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

strengths and weaknesses of the range

A

strengths: easy to calculate
gives you a good idea of the spread

weaknesses: affected by outliers
not useful for other stat tests

24
Q

what three maths techniques are a measure of central tendency

A

mean, mode, median

25
what three maths techniques are a measure of dispersion
range, variance, standard deviation
26
what is variance
the spread of scores around a mean
27
what is standard deviation
it is the variance square rooted. It tells us the average amount the number differs from a mean
28
strengths and weaknesses of variance
strengths: not distorted by extremes weaknesses: takes a while to calculate assumes normal distribution
29
strengths and weaknesses of standard deviation
strengths: not distorted by outliers closely related to the mean therefore measure measure of dispersion weaknesses: takes a long time to calculate assumes normal distribution
30
How do you calculate standard deviation
1) calculate the mean 2) minus the mean from each score 3) square each number 4) add the squared number together 5) divided by n - 1 This is the variance 6) square root the answer to find SD
31
how do you calculate a percentage
the score/ total x 100
32
what is a frequency table (tally charts)
it has the behaviour and how many times it was seen
33
what does a bar chart look like?
used to represent data from frequency tables. Used for nominal and ordinal levels. Bars are separate
34
what does a histogram look like
represents interval data. Have no gaps in between bars.
35
What does a line graph look like
used instead of a histogram. Shows results from two or more conditions
36
what does a scatter diagram look like
used with correlations and show the direction of the results
37
when do we use pie charts
When we have %
38
How do you calculate how to draw each segment on a pie chart
1) Find the total of the data 2) 360 divided by the total 3) Multiply each piece of data by the number in step 2
39
Draw out a normal distribution graph with the % that you find results in
a bell shaped graph with equal scores on both sides. Symmetrical 1) 68% within in the 1st SD 2) 95% within the 2nd SD 3) 99.7% within the 3rd SD
40
What does skewed distribution curves mean
not symmetrical at the mean (or median or mode) point. A skew can be positive or negative
41
Draw a positively skewed distribution graph
the curve is on the left
42
Draw a negatively skewed distribution graph
the curve is on the right
43
What is type 1 error
Incorrectly rejecting the null hypothesis which is true (FALSE POSITIVE)
44
what is type 2 error
Incorrectly accepting a false null hypothesis (FALSE NEGATIVE)
45
What are the criteria for a parametric test
1) Populations drawn from should be normally distributed. 2) Variances of populations and data should be approximately equal. 3) Should have at least interval or ratio data. 4) Should be no extreme scores.
46
What is significance level
the probability that a pattern in results is due to chance. p is equal to or more than 0.05
47
Why do we use a sign test
repeated measures, nominal data, testing for a difference
48
why do we use chi squared
independent/correlation, nominal data, testing for a an association
49
why do we use willcoxen
repeated measured, testing for a difference, ordinal/interval data
50
why do we use Mann Whitney
independent measures, testing for an difference, ordinal/interval data
51
why do we use spearmans rho
correlation, testing for an association, ordinal/interval data
52
How do we use the sign test
1) minus the scores together 2) ignore the ones without a difference 3) pick the least frequent sign - OV 4) to find CV find number of pps (TAKE OUT ONES NOT USED) and find the significance level OV had to be lower then CV
53
How do we use wilcoxen test
1) calculate the differences 2) ignore the signs and rank numbers 3) add the ranks of the least frequent sign - OV 4) find n (number of pps used) and then on CV table find significance levels OV is has to lower than CV
54
How do we use the Mann Whitney Test
1) rank with both groups together 2) If any tied ranks - add ranks they would have occupied and dived by how many numbers tied 3) Add the ranks from column 1 and column 2 separately 4) put the values in the formula and choose the smallest value - OV 5) for CV find N1 and N2
55
How do we use chi squared test
1) contingency tables used 2) add the column and row totals should get the same number overall 3) calculate the expected cell frequency which is the (row +column total)/ grand total 4) then use the formula O = number you were given E= number you calculated and add all the numbers together 5) calculate degrees of freedom ( row - 1) x (column -1) 6) CV table look at DoF and OV OV needs to be larger than CV
56
How do we calculate spearmans rho
1) Rank the rows seperatly 2) minus the ranks 3) square the ranks 4) Add the squared ranks together 5) multiply the number by 6 and divided by n(n2 - 1)