폴리야의 문제 해결 수업 모형 Flashcards
(11 cards)
0
Q
문제의 이해 발문
A
구하려는 것은 무엇인가? 자료는 무엇인가? 조건은 무엇인가? 그림을 그려보아라 적절한 기호를 붙여라 조건은 만족될 수 있는가? 조건은 미지인 것을 결정하기에 충분한가?
1
Q
문제 해결 수업 모형의 단계
A
문제의 이해
풀이계획의 수립
계획의 실행
풀이에 대한 반성
2
Q
풀이 계획의 수립 발문
A
문제에서 주어진 것과 구하려는 것 사이의 관계를 찾아보아라 즉각적으로 그러한 관계를 발견할 수 없다면 보조 문제를 고려하여라 풀이에 대한 계획을 작성하여라 💕전에 그러한 문제를 본 적이 있는가? 약간 다른 형태의 문제라도 본 일이 있는가? 비슷한 문제를 본적이 있는가? 그것을 활용할 수 있을까? 자료는 모두 사용했는가? 조건은 모두 사용했는가? 문제에 포함된 핵심적인 개념은 모두 고려했는가?
3
Q
계획의 실행 단계 발문
A
계획을 실행하고 매 단계를 점검하여라
각 단계가 올바른지 명확히 알 수 있는가?
그것이 옳다는 것을 증명할 수 있는가?
4
Q
풀이에 대한 반성 단계 발문
A
결과를 점검할 수 있는가?
논증 과정을 점검할 수 있는가?
결과를 다른 방법으로 이끌어낼 수 있는가?
결과나 방법을 다른 문제에 활용할 수 있는가?
5
Q
문제의이해 단계 교수-학습 활동
A
문제의 이해
문제에서 구하려는 것과 주어진 것 알기
문제에 제시된 수학적 용어의 의미 파악하기
6
Q
해결계획세우기 교수-학습 활동
A
전에 풀어본 경험이 있는 문제인가? 문제해결방법 생각하기 문제에서 주어진 것과 구하려는 것 사이의 관계 파악하기 여러가지 문제해결 전략 생각하기 주어진 것과 구하려는 것 사이의 관련성을 즉각적으로 알 수 없을 때에는 보조문제 고려하기
7
Q
해결 계획의 실행 교수-학습 활동
A
해결계획실행하기
8
Q
반성 교수-학습 활동
A
문제해결과정 검토하기 다른해결방법 탐색하기 문제해결과정과 결과를 논의하여 더 나은 문제해결 방법 탐색하기 문제해결 방법을 일반화하기 조건을 변경하여 새로운 문제 만들기
9
Q
브라운과 월터 수용과 도전
A
수용: 원문제에서 주어진 조건이나 결과를 그대로 받아들여 문제 만들기 활동 하는 단계
도전: 원문제를 그대로 수용하는데 그치지 않고 원문제에서 주어진 조건이나 속성을 나열하고 그것을 다양하게 바꾸어 그 결과가 어떻게 변하는 지를 알아보는, 새로운 문제를 탐구해보는 단계 what if not 전략
10
Q
문제해결사고전략 12개
A
그림이나 도표로 그리기 규칙성 찾기 체계적인 목록 만들기 표 만들기 문제를 단순화하기 추측하고 점검하기 (예상과 확인) 실험해보기 실제로 해보기 거꾸로 풀기 식 세우기 논리적으로 추론하기 -가능성이 있는 모든 해법에 대해 점검해보고 불가능한 해법을 제거해가면서 가능한 하나의 해법에 이를때까지 차례로 고찰 관점을 바꾸어보기