COMPREHENSIVE 101-189 Flashcards Preview

JAMES D FIX fey > COMPREHENSIVE 101-189 > Flashcards

Flashcards in COMPREHENSIVE 101-189 Deck (41)
1

A. Anterior thalamic nucleus
B. Centromedian nucleus
C. Ventral lateral nucleus
D. Ventral posteromedial (VPM) nucleus
E. Mediodorsla nucleus

109. Receives input from the dentate nucleus

109-C The ventral lateral nucleus receives input from the dentate nucleus of the cerebellum and projects to the motor cortex (area 4). The ventral posterolateral (VPL) nucleus also receives input from the dentate nucleus and projects to the motor cortex.

2

A. Anterior thalamic nucleus
B. Centromedian nucleus
C. Ventral lateral nucleus
D. Ventral posteromedial (VPM) nucleus
E. Mediodorsla nucleus

110. Receives input of taste sensation from the sohtary nucleus

110-D The ventral posteromedial (VPM) nucleus receives input of taste sensation from the solitary nucleus of the medulla and pons, and projects this input to the gustatory cortex of the parietal operculum (area 43).

3

A. Anterior thalamic nucleus
B. Centromedian nucleus
C. Ventral lateral nucleus
D. Ventral posteromedial (VPM) nucleus
E. Mediodorsla nucleus

111. Receives input of pain and temperature sensation from the face

111-D The ventral posteromedial (VPM) nucleus receives general somatic afferent (GSA) input from the face including pain and temperature sensation. It also receives special visceral afferent (SVA; taste sensation) input from the tongue and epiglottis.

4

A. Anterior thalamic nucleus
B. Centromedian nucleus
C. Ventral lateral nucleus
D. Ventral posteromedial (VPM) nucleus
E. Mediodorsla nucleus

112. Receives the mamillothalamic tract

112-A The anterior thalamic nucleus receives input from the mamillary nucleus via the mamillothalamic tract and direct input from the hippocampal formation via the fornix. The anterior nucleus projects, via the arterior limb of the internal capsule, to the cingulated gyrus (areas 23, 24, dan 32).

5

A. Anterior thalamic nucleus
B. Centromedian nucleus
C. Ventral lateral nucleus
D. Ventral posteromedial (VPM) nucleus
E. Mediodorsla nucleus

113. Projects to the putamen

113-B The centromedian nucleus, the largest of the intralaminar nuclei, projects to the putamen and to the motor cortex. The centromedian nucleus receives input from the globus pallidus and the motor cortex (area 4).

6

A. Anterior thalamic nucleus
B. Centromedian nucleus
C. Ventral lateral nucleus
D. Ventral posteromedial (VPM) nucleus
E. Mediodorsla nucleus

114. Has reciprocal connections with the prefrontal cortex

114-E The mediodorsal nucleus of the thalamus, or the dorsomedial nucleus, has reciprocal connections with the prefrontal cortex (areas 9-12).

7

A. Anterior nucleus
B. Arcuate nucleus
C. Mamillary nucleus
D. Paraventricular nucleus
E. Suprachiasmatic nucleus

115. Receives input from the hippocampal formation

115-C The mamillary nucleus receives input from the hippocampal formation (i.e. subiculum) via the fornix).

8

A. Anterior nucleus
B. Arcuate nucleus
C. Mamillary nucleus
D. Paraventricular nucleus
E. Suprachiasmatic nucleus

116. Destruction results in hyperthermia

116-A The anterior nucleus of the hypothalamus helps prevent a rise in body temperature by activating processes that favor heat loss (e.g. vasodilation of cutancous blood vessels, sweating). Lesions of this nucleus result in hyperthermia (hyperpyrexia).

9

A. Anterior nucleus
B. Arcuate nucleus
C. Mamillary nucleus
D. Paraventricular nucleus
E. Suprachiasmatic nucleus

117. Receives input from the retina

117-E The suprachiasmatic nucleus receives direct input from the retina; it plays a role in the maintenance of circadian rhythms.

10

A. Anterior nucleus
B. Arcuate nucleus
C. Mamillary nucleus
D. Paraventricular nucleus
E. Suprachiasmatic nucleus

118. Projects to the neurohypophysis

118-D The neurons of the paraventricular and supraoptic nuclei of the hypothalamus produce antiduretic hormone (ADH; vasopressin) and oxytocin. These peptides are transported via the supraopticohypophyseal tract to the neurohypophysis. Lesions of these nuclei or their hypophyseal tract result in diabetes insipidus.

11

A. Anterior nucleus
B. Arcuate nucleus
C. Mamillary nucleus
D. Paraventricular nucleus
E. Suprachiasmatic nucleus

119. Regulates the activity of the adenohypophysis

119-B The neurons of the arcute nucleus (infundibular nucleus) produce hypothalamic relasing and relase, inhibiting hormones, which are conveyed to the adenohypophysis through the hypophyseal portal system. These hormones regulate the production of adenohypophyseal hormones and their release into the systemic circulation.

12

A. Anterior nucleus
B. Arcuate nucleus
C. Mamillary nucleus
D. Paraventricular nucleus
E. Suprachiasmatic nucleus

120. Regulates water balance

120-D The paraventricular and supraoptic nuclei produce antiduretic hormons (ADH), which helps regulate water balance in the body.

13

A. Caudate nucleus
B. Globus pallidus
C. Centromedian nucleus
D. Substantia nigra
E. Subthalamic nucleus

121. Destruction causes contralateral hemiballism

121-E Hemiballism results from circumscript lesions of the subthalamic nucleus

14

A. Caudate nucleus
B. Globus pallidus
C. Centromedian nucleus
D. Substantia nigra
E. Subthalamic nucleus

122. Receives dopaminergic midbrain

122-A The caudate nucleus and the putamen (caudatoputamen) receive dopaminergic input from the pars compacta of the substantia nigra, the nigrostriatal tract

15

A. Caudate nucleus
B. Globus pallidus
C. Centromedian nucleus
D. Substantia nigra
E. Subthalamic nucleus

123. Gives rise to the ansa lenticularis and the lenticular fasciculus

123-B Neurons of the globus pallidus give rise to the ansa lenticularis and the lenticular fasciculus, two pathways that project to the ventral anterior, ventral lateral, and centromedian nuclei of the thalamus.

16

A. Caudate nucleus
B. Globus pallidus
C. Centromedian nucleus
D. Substantia nigra
E. Subthalamic nucleus

124. Destruction causes hypokinetic rigid syndrome

124-D Destruction or degeneration of the substantin nigra results in parkinsonism (hypokinetic-rigid syndrome).

17

A. Caudate nucleus
B. Globus pallidus
C. Centromedian nucleus
D. Substantia nigra
E. Subthalamic nucleus


125. A. loss of cells in this griseum causes greatly dilated lateral ventricles

125-A In Huntington chorea, there is a loss of neurons in the striatum. Cell loss in the head of the caudate nucleus causes dilation of the frontal horn of the lateral ventricle (hydrocephalus exvacuo). Which is visible on computed tomography (CT) and magnetic resonance imaging (MRI) studies.

18

A. Acetylcholine (Ach)
B. Dopamine
C. Gamma-aminobutyric acid (GABA)
D. Norepinephrine
E. Serotonin

126. Raphe nuclei

126-E Serotonin (5-HT) is produced by neurons located in the raphe nuclei. This paramidline column of cells extends from the caudal medulla to the rostral midbrain

19

A. Acetylcholine (Ach)
B. Dopamine
C. Gamma-aminobutyric acid (GABA)
D. Norepinephrine
E. Serotonin

127. Purkinje cells

127-C Purkinje neurons are GABA-ergic, GABA-ergic neurons are also found in the striatum, globus pallidus, and in the pars reticularis of the substantia nigra.

20

A. Acetylcholine (Ach)
B. Dopamine
C. Gamma-aminobutyric acid (GABA)
D. Norepinephrine
E. Serotonin

128. Nucleus basalis of meynert

128-A The nucleus basalis of Meynert contains cholinergic neurons, which project to the netire neocortex, This griseum is a ventral forebrain nucleus found embedded in the substantia innominata (located ventral to the globus pallidus). This nucleus degenerates in Alzheimer disease.

21

A. Acetylcholine (Ach)
B. Dopamine
C. Gamma-aminobutyric acid (GABA)
D. Norepinephrine
E. Serotonin

129. Motor cranial nerve nuclei

129-A Acetylcholine (Ach) is the neurotransmitter of motor cranial nerves [general] somatic efferent (GSE), special visceral efferent (SVE), and general visceral efferent (GVE) and anterior horn cells of the spinal cord.

22

A. Acetylcholine (Ach)
B. Dopamine
C. Gamma-aminobutyric acid (GABA)
D. Norepinephrine
E. Serotonin

130. Pars compacta of the substantia nigra

130-B Neurons of the pars compacta of the substantia nigra contain dopamine. Dopamine also is present in the ventral tegmental area of the midbrain, the superior colliculus, and the arcuate nucleus of the hypothalamus.

23

A. Acetylcholine (Ach)
B. Dopamine
C. Gamma-aminobutyric acid (GABA)
D. Norepinephrine
E. Serotonin

131. Locus ceruleus

131-D The locus ceruleus is the largest assemblage of noradrenergic (norepinephrinergic) neurons in the entire brain. It is located in the lateral pontine and midbrain tegmenta. Locusceruleus neurons project to the entire neocortex and ceerebellar cortex.

24

A. Acetylcholine (Ach)
B. Dopamine
C. Gamma-aminobutyric acid (GABA)
D. Norepinephrine
E. Serotonin

132. Globus pallidus

132-C The globus pallidus contains gamma-aminobutyric acid GABA-egic neurons that project to the thalamus and subthalamic nucleus.

25

A. Glutamate
B. Glycine
C. β-endorphin
D. Enkephalin
E. Substance P

133. Neurotransmitter of afferent pain fibers

133-E Substance P is contained in dorsal root ganglion cells and is the neurotransmitter of afferent pain fibers. Substance P also is produced by striatal neurons, which project to the globus pallidus and substantia nigra.

26

A. Glutamate
B. Glycine
C. β-endorphin
D. Enkephalin
E. Substance P

134. Major inhibitory neurotransmitter of the spinal pathway

134-B Glycine is the major inhibitory neurotransmitter of the spinal cord. The Renshaw interneurons of the spinal cord are glycinergic

27

A. Glutamate
B. Glycine
C. β-endorphin
D. Enkephalin
E. Substance P

135. Major neurotransmitter of the corticospinal pathway

135-A Glutamate is the major excitatory neurotransmitter of the brain; neocortical glutamatergic neurons project to the caudate nucleus and the putamen (striatum).

28

A. Glutamate
B. Glycine
C. β-endorphin
D. Enkephalin
E. Substance P

136. Located almost exclusively in the hypothalamus

136-C β-Endorphinergic neurons are located almost exclusively in the hypothalamus (arcuate and premamillary nuclei).

29

A. Glutamate
B. Glycine
C. β-endorphin
D. Enkephalin
E. Substance P

137. Helps inhibit input from afferent poin fibers

137-D Enkephalinergic neurons in the dorsal horn of the spinal cord presynaptically inhibit the dorsla root ganglion cells that mediate pain impulses.

30

A. Left frontal lobe
B. Left pariental lobe
C. Right partial lobe
D. Left temporal lobe
E. Right occipital lobe

138. left upper quadrantanopia

138-E A lesion of the ligual gyrus of the right occipital lobe can cause a left upper homonymous quadrantanopia. Lower retinal quadrants are represented in the lower bank of the calcarine sulcus.

31

A. Left frontal lobe
B. Left pariental lobe
C. Right partial lobe
D. Left temporal lobe
E. Right occipital lobe

139. Muscle weakness and clumsiness in the right hand; slow effortful speech

139-A A lesion of the broca speech area (areas 44 and 45) and the adjacent motor cortex of the precentral gyrus (area 4) can cause Broca expressive aphasia and an upper motor neuron (UMN) lesion involving the hand area of the motor strip. This territory is supplied by the superior division of the middle cerebral artery (prerolandic and rolandic arteries).

32

A. Left frontal lobe
B. Left pariental lobe
C. Right partial lobe
D. Left temporal lobe
E. Right occipital lobe

140. Inability to identify a key placed in the left hand with the eyes closed.

140-C A parientla lesion in the left postcentral gyrus (areas 3, 1, and 2) or in the left superior parientla lobule (areas 5 and 7) can cause astereognosis, the difict in which a patient with eyes closed cannot identify a familiar object placed in the right hand. This territory is supplied by the superior division of the middle cerebral artery (the rolandic and anterior pariental arteries). The dosal aspect of the superior pariental lobule on the convex suface is also supplied by the anterior cerebral artery.

33

A. Left frontal lobe
B. Left pariental lobe
C. Right partial lobe
D. Left temporal lobe
E. Right occipital lobe

141. Denial of hemiparesis; patient ignores stimuli from one side of the body

141-C Characteristic signs of damage to the nondominant hemisphere include hemineglect, topographic memory loss, denial of deficit (anosognosia), and construction and dressing apraxin. A lesion in the right inferior pariental lobule could account for these deficits. This territory is supplied by inferior division of the middle cerebral artery (posterior parietal and angular arteries).

34

A. Left frontal lobe
B. Left pariental lobe
C. Right partial lobe
D. Left temporal lobe
E. Right occipital lobe

142. Poor comprehension of speech; patient is unware of the deficit

142-D Wernicke receptive aphasia is characterized by poor comprehension of speech, unawareness of the defict, and difficulty finding the correct words to express a thought. The Wernicke speech area is found in the posterior part of the left superior temporal gyrus (area 22). This territory is supplied by the inferior division of the middle cerebral artery (posterior temporal branches).

35

A. Left frontal lobe
B. Left pariental lobe
C. Right partial lobe
D. Left temporal lobe
E. Right occipital lobe

143. Patient is unablw to identify fingers touched by examiner when eyes are closed; is unable to perform simple calculations

143-B Gerstmann syndrome includes left-right confusion, finger agnosia, dysgraphia, and dyscalculia. This syndrome results from a lesion of the left angular gyrus of the inferiof parietal lobule. This territory is supplied by branches from the inferior division of the middle cerebral artery (angular and posterior parietal arteries).

36

A. Left frontal lobe
B. Left pariental lobe
C. Right partial lobe
D. Left temporal lobe
E. Right occipital lobe

144. Babinski sign and ankle clonus

144-A A lesion of the anterior paracentral lobule results in an upper motor neuron (UMN) lesion (spastic paresis) involving the contralateral foot. Ankle clonus, exaggerated muscle stretch reflexes, and the Babinski sign are common.

37

A. Diabetes insipidus
B. Hyperthermia
C. Hyperhagia and savage behavior
D. Inability to thermoregulate
E. Anorexia

170. Bilateral lesions of the ventromedial hypothalamic nucleus

170-C A bilateral lesion of the ventromedial hypothalamic nucleus results in thyperphagia and savage behavior

38

A. Diabetes insipidus
B. Hyperthermia
C. Hyperhagia and savage behavior
D. Inability to thermoregulate
E. Anorexia

171. Bilateral lesions of the posterior hypothalamic nuclei

171-D A bilateral lesion of the posterior hypothalamic nucleus results in the inability to thermoregulate 9poikilothermia). Bilateral descruction of only the posterior aspect of the lateral hypothalamic nuecleus results in anorexia and emaciation.

39

A. Diabetes insipidus
B. Hyperthermia
C. Hyperhagia and savage behavior
D. Inability to thermoregulate
E. Anorexia

172. Lesions invoving the supraoptic and paraventricular nuclei

172-A Lesions involving the supraoptic and paraventricular nuclei or the supraopticohy pophyseal tract result in diabetes insipidus with polydipsia and polyuria.

40

A. Diabetes insipidus
B. Hyperthermia
C. Hyperhagia and savage behavior
D. Inability to thermoregulate
E. Anorexia

173. Destruction of the anterior hypothalamic nuclei

173-B Destruction of the anterior hypothalamic nuclei results in hyperthermia.

41

A. Diabetes insipidus
B. Hyperthermia
C. Hyperhagia and savage behavior
D. Inability to thermoregulate
E. Anorexia

174. Stimulation of the ventromedial nuclei

174-E Stimulation of the ventromedial nuclei (VMNs) inhibits the urge to eat, resulting in emaciation (cachexia). Destruction of the VMNs results in hyperphagia and savage behavior.