{ "@context": "https://schema.org", "@type": "Organization", "name": "Brainscape", "url": "https://www.brainscape.com/", "logo": "https://www.brainscape.com/pks/images/cms/public-views/shared/Brainscape-logo-c4e172b280b4616f7fda.svg", "sameAs": [ "https://www.facebook.com/Brainscape", "https://x.com/brainscape", "https://www.linkedin.com/company/brainscape", "https://www.instagram.com/brainscape/", "https://www.tiktok.com/@brainscapeu", "https://www.pinterest.com/brainscape/", "https://www.youtube.com/@BrainscapeNY" ], "contactPoint": { "@type": "ContactPoint", "telephone": "(929) 334-4005", "contactType": "customer service", "availableLanguage": ["English"] }, "founder": { "@type": "Person", "name": "Andrew Cohen" }, "description": "Brainscape’s spaced repetition system is proven to DOUBLE learning results! Find, make, and study flashcards online or in our mobile app. Serious learners only.", "address": { "@type": "PostalAddress", "streetAddress": "159 W 25th St, Ste 517", "addressLocality": "New York", "addressRegion": "NY", "postalCode": "10001", "addressCountry": "USA" } }

Análitica Flashcards

(11 cards)

1
Q

f analítica definição

A

f é representado em D(z0, r) ⊆ U por uma séria de potências centradas em z0.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

exemplos de funções analíticas

A

polinómios, exponencial, trigonometricas

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

e^z centrada em z0

A

= ∑(0 ∞) (e^z0 / n!) * (z-z0)^n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

cos(z) centrada em z0

A

= ∑(0 ∞) ((-1)^n * z^(2n)) / (2n)!

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

sin(z) centrada em z0

A

= ∑(0 ∞) ( ( (-1)^n ) / (2n+1)! ) * z^(2n+1)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Proposição sobre zeros

A

Se f. U(aberto) -> C analítica e não constante, então todos os zeros são isolados
f(z0) = 0 -> ∃r>0 : D(z,r)⊆U e f(z)≠0 ∀z ∈ D(z0,r) \ {z0}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Princípio do prolongamento analítico

A

U aberto conexo
f,g: U -> C analíticas
Se ∃ V ≠ ∅, aberto, contido em U tal que f coincide com g em V, então f=g

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

f=g condição suficiente

A

{z∈U : f(z) = g(z)} tem algum ponto de acumulação em U

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

limite que define e

A

lim (n->∞) (1 + 1/n)^n = e

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

séries divergentes exemplos

A

∑1/n e ∑1/n^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

∑z^n

A

= 1 / 1-z

How well did you know this?
1
Not at all
2
3
4
5
Perfectly