{ "@context": "https://schema.org", "@type": "Organization", "name": "Brainscape", "url": "https://www.brainscape.com/", "logo": "https://www.brainscape.com/pks/images/cms/public-views/shared/Brainscape-logo-c4e172b280b4616f7fda.svg", "sameAs": [ "https://www.facebook.com/Brainscape", "https://x.com/brainscape", "https://www.linkedin.com/company/brainscape", "https://www.instagram.com/brainscape/", "https://www.tiktok.com/@brainscapeu", "https://www.pinterest.com/brainscape/", "https://www.youtube.com/@BrainscapeNY" ], "contactPoint": { "@type": "ContactPoint", "telephone": "(929) 334-4005", "contactType": "customer service", "availableLanguage": ["English"] }, "founder": { "@type": "Person", "name": "Andrew Cohen" }, "description": "Brainscape’s spaced repetition system is proven to DOUBLE learning results! Find, make, and study flashcards online or in our mobile app. Serious learners only.", "address": { "@type": "PostalAddress", "streetAddress": "159 W 25th St, Ste 517", "addressLocality": "New York", "addressRegion": "NY", "postalCode": "10001", "addressCountry": "USA" } }

Laurent Flashcards

(18 cards)

1
Q

A(z0, ρ1, ρ2)

A

{z∈C : ρ1 < |z-z0| < ρ1}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Série de Laurent

A

f(z) = ∑(m=1 oo) bm / (z-z0)^m + ∑(n=0 oo) an * (z-z0)^n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Série de Laurent an

A

= 1 / 2𝝅i 𝛄1 ∫ f(w) / (w-z0)^n+1 * dw
𝛄1 = {z∈C: |z-z0|<r1} e ρ1<r1sin<ρ2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Série de Laurent bn

A

= 1 / 2𝝅i 𝛄2 ∫ f(w) * (w-z0)^m-1 * dw
𝛄2 = {z∈C: |z-z0|<r2} e ρ1<r2<ρ2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Série de Laurent (propriedades)

A

converge uniformemente em cada anel fechado cocentrico com A contido em A

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Se f(z) = ∑(-oo oo) an * (z-z0)^n

A

an = 1 / 2𝝅i 𝛄r ∫ f(z) / (z-z0)^n+1 * dw
𝛄r = {z∈C: |z-z0|<r} e ρ1<r<ρ2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Série de Laurent de e^(1/z)

A

A(0,0,oo)
∑1/n! * 1/z^n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Série de Laurent de 1/z^2+z
A(0,0,1)

A

1/z + ∑(0 oo) (-1)^(n+1) * z^n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Série de Laurent de 1/z^2+z
A(-1,1,oo)

A

∑(0 oo) 1/(z+1)^n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

singularidade definição

A

f: U -> C holomorfa
z0 ∈ C é uma singularidade se
z0 ∉ U e ∃r>0 : A(z0,0,r) ⊆ U

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

singularidade removível (def)

A

bm = 0 ∀m

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

pólo de ordem k (def)

A

bk ≠ 0 e bm = 0 ∀m>k

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

pólo simples (def)

A

ordem 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

singularidade essencial (def)

A

Se {m∈N : bm ≠ 0} foi infinito

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

singularidade removivel

A

sse f admite um prolongamento holomorfo a U ∪ {z0}
sse lim z->z0 f(z) existe e é finito
sse f limitado numa vizinhança de z0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

f holomorfa em A(z0,0,ρ)

A

-> z0 é um pólo de ordem k≥0 sse lim(z-z0)^kf(z) existe e é um número complexo não nulo

17
Q

f tem polo de ordem k

A

lim z->z0 f(z) = oo

18
Q

Teorema Coroti-Weierstrass

A

z0: singularidade essencial de f
∀ A(z0,0,ρ) ⊆ Dom
-> f(A) denso em C