{ "@context": "https://schema.org", "@type": "Organization", "name": "Brainscape", "url": "https://www.brainscape.com/", "logo": "https://www.brainscape.com/pks/images/cms/public-views/shared/Brainscape-logo-c4e172b280b4616f7fda.svg", "sameAs": [ "https://www.facebook.com/Brainscape", "https://x.com/brainscape", "https://www.linkedin.com/company/brainscape", "https://www.instagram.com/brainscape/", "https://www.tiktok.com/@brainscapeu", "https://www.pinterest.com/brainscape/", "https://www.youtube.com/@BrainscapeNY" ], "contactPoint": { "@type": "ContactPoint", "telephone": "(929) 334-4005", "contactType": "customer service", "availableLanguage": ["English"] }, "founder": { "@type": "Person", "name": "Andrew Cohen" }, "description": "Brainscape’s spaced repetition system is proven to DOUBLE learning results! Find, make, and study flashcards online or in our mobile app. Serious learners only.", "address": { "@type": "PostalAddress", "streetAddress": "159 W 25th St, Ste 517", "addressLocality": "New York", "addressRegion": "NY", "postalCode": "10001", "addressCountry": "USA" } }

Cauchy Flashcards

(15 cards)

1
Q

Teorema de Cauchy para triânculos

A

f: U -> C holomorfa
△: triângulo com interior contido em C
-> △ ∫ f(z) * dz = 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

aberto estrelado

A

∃z0 ∈ U : ∀z ∈ U o segmente z0 a z ⊆ U

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Exemplo aberto estrelado

A

C\l+
l+: semi-reta

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Teorema funções holomorfas em U

A

Toda a função holomorfa f definida num aberto estrelado U tem primitiva em U

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

U aberto estrelado
f: U -> C holomorfa
𝛄⊆U caminho fechado

A

𝛄 ∫ f(z) * dz = 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

1ª fórmula integral de Cauchy

A

f: U -> C holomorfa
D[z0,r]: disco fechado
𝛄: fr(D[z0,r])
-> f(z) = 1 / 2𝝅i * 𝛄 ∫ f(w) / (w-z) * dw
∀z∈D(z0,r)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

f holomorfa (entãos)

A

-> f analítica
-> f’ holomorfa -> f’ contínua
-> tem derivada complexa de todas as ordens

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

𝛄 ∫ f(z) * dz
f(z) = u(x,y) + i * v(x,y)
𝛄 parametrizado por 𝛂(t) = x(t) + i * y(t)

A

= 𝛄 ∫ (u * dx - v * dy) + i * 𝛄 ∫ (v * dx + u * dy)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Teorema de Cauchy (geral)

A

f: U -> C holomorfa
Ω ⊆ U compacto, conexo, limitado por um número finito de curvas simples, C1 por pedaços, 2 a 2 disjuntas:
fr(Ω) ∫ f(z) * dz = 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Fórmula da Cauchy

A

Ω: região compacta, delimitada por uma única curva fechada, simples, C1 por pedaços, contida no domínio de f
f: holomorfa
∀z∈Ωº f(z) = 1/2𝝅i * fr(Ω) ∫ f(w) / w-z * dz
f^(n) (z) = n!/2𝝅i * fr(Ω) ∫ f(w) / w-z * dz

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Como mostramos a continuidade?

A

U: aberto conexa de C
f: U -> C holomorfa
Se |f(z)| constante em U, então f também

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Princípio de módulo máximo

A

U: aberto conexa de C
f: U -> C holomorfa
Se |f(z)| atinge um máximo em z∈U, então f é constante

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Teorema Fundamental da Álgebra

A

p(z): polinómio em C, grau ≥1
-> p tem raiz em C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Teorema de Lionville

A

f: U -> C holomorfa e limitada
-> f constante

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Lema integrais e séries

A

∑fn(z) (fn contínuas) converge uniformemente em 𝛄 (fechado) para F(z)
-> 𝛄 ∫ F(z) * dz = ∑(1 oo) (𝛄 ∫fn(z) * dz)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly