{ "@context": "https://schema.org", "@type": "Organization", "name": "Brainscape", "url": "https://www.brainscape.com/", "logo": "https://www.brainscape.com/pks/images/cms/public-views/shared/Brainscape-logo-c4e172b280b4616f7fda.svg", "sameAs": [ "https://www.facebook.com/Brainscape", "https://x.com/brainscape", "https://www.linkedin.com/company/brainscape", "https://www.instagram.com/brainscape/", "https://www.tiktok.com/@brainscapeu", "https://www.pinterest.com/brainscape/", "https://www.youtube.com/@BrainscapeNY" ], "contactPoint": { "@type": "ContactPoint", "telephone": "(929) 334-4005", "contactType": "customer service", "availableLanguage": ["English"] }, "founder": { "@type": "Person", "name": "Andrew Cohen" }, "description": "Brainscape’s spaced repetition system is proven to DOUBLE learning results! Find, make, and study flashcards online or in our mobile app. Serious learners only.", "address": { "@type": "PostalAddress", "streetAddress": "159 W 25th St, Ste 517", "addressLocality": "New York", "addressRegion": "NY", "postalCode": "10001", "addressCountry": "USA" } }

Resíduo Flashcards

(13 cards)

1
Q

res(f,z0)

A

z0: singularidade de f
série de Laurent de f em A(z0,0,ρ)
= bm

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Como calculamos integrais com res?

A

𝛄 com circunferência |z-z0|=r (0<r<ρ)
-> 𝛄 ∫ f(z) * dz = 2𝝅i res(f,z0)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Teorema resíduo

A

f holomorfa
𝛄 curva fechada, simples, regular por pedaços, contida no Dom(f) e com exceção de um número finito de singularidades (z1,…,zn) o aberto delimitado por 𝛄 está contido em Dom(f)
-> 𝛄 ∫ f(z) * dz = 2𝝅i (res(f,z1)+…+res(f,zn))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Teorema resíduo se não houver singularidades

A

𝛄 ∫ f(z) * dz = 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Fórmula para o cálculo de resíduos
z0 é um pólo de ordem 1

A

res(f,zo) = lim (z->z0) (z-z0) * f(z)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Fórmula para o cálculo de resíduos
f(z) = p(z) / q(z) e q(z) tem um zero simples em z0

A

res(f,z0) = p(z0) / q’(z0)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Fórmula para o cálculo de resíduos
z0 é um pólo de ordem k≥2

A

res(f,z0) = derivada (k-1) [ (z-z0)^k f(z) ] / (k-1)!

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

-oo,oo ∫ f(x) * dx (real)

A

f(z) holomorfa, definida em Im(z)≥0 (tirando um número finito de singularidades z1, …, zn)
𝛄={z∈C: Im(z) ≥ 0 e |z|=r}
-> lim (r->oo) 𝛄 ∫ g(z) * dz = 0 -> -oo,oo ∫ f(x) * dx = 2𝝅i * ∑res(f,zi)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

-oo,oo ∫ f(x) * dx (real) e |zn|<r

A

-r,r ∫ f(x) * dx + 𝛄 ∫ f(z) * dz = 2𝝅i * ∑res(f,zi)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

0,2𝝅 ∫ F(cos(x),sin(x)) * dx

A

𝛄(t) = e^it, 0 ≤ t ≤ 2𝝅
f(z) = F( (z+1/z) / 2, (z-1/z) / 2 ) * 1/iz

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

zero de multiplicidade m

A

f: U -> C holomorfa, não constante
z0: zero de f
∑an * (z-z0)^k: série de Taylor
-> a0=a1=…=am-1=0 e am≠0
sse f(z0)=…=f^(m-1)(z0)=0 e f^(m)(z0)≠0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Teorema de Rouché

A

U aberto
f,g: U -> C holomorfas
𝛄⊆U fechado, simples, regular por pedaços e a região delimitada por 𝛄 ⊆ U
Se |g(z)-f(z)|<|f(z)| ao longo de 𝛄, então f e g têm o mesmo número de zeros no aberto delimitado por 𝛄

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly